< Previous 1. lingkup pekerjaan dan peraturan bangunan 403 terutama sangat berguna untuk beban hidup ringan yang terdistribusi merata dan untuk bentang yang tidak besar. Kondisi demikian umumnya dijumpai pada konstruksi rumah. Joists pada umumnya menggunakan tumpuan sederhana karena untuk membuat tumpuan vang dapat menahan momen diperlukan konstruksi khusus. Pada umumnya, lantai dianggap tidak monolit dengan joists kecuali apabila digunakan konstruksi khusus yang menyatukannya. Gambar 8.9. Sistem konstruksi untuk struktur kayu (lanjutan) Sumber: Schodek, 1999 1. lingkup pekerjaan dan peraturan bangunan 404 Sistem tumpuan vertikal yang umum digunakan adalah dinding pemikul beban yang dapat terbuat dari bata atau dari susunan elemen kayu (plywood). Dalam hal yang terakhir ini, tahanan lateral pada susunan struktur secara keseluruhan terhadap beban horizontal diperoleh dengan menyusun dinding berlapisan plywood yang berfungsi sebagai bidang-bidang geser. Struktur demikian pada umumnya dibatasi hanya sampai tiga atau empat lantai. Pembatasan ini tidak hanya karena alasan kapasitas pikul bebannya, tetapi juga karena persyaratan keamanan terhadap kebakaran yang umum diberikan pada peraturan-peraturan mengenai gedung. Karena setiap elemen pada sistem struktur ini diletakkan di tempatnya secara individual, maka banvak fleksibilitas dalam penggunaan sistem tersebut, termasuk juga dalam merencanakan hubungan di antara elemen-elemennya. ELEMEN KULIT BERTEGANGAN (STRESSED SKIN ELEMENTS). Elemen kulit bertegangan tentu saja berkaitan dengan sistem joists standar [lihat Gambar 8.9(b)]. Pada elemen-elemen ini, kayu lapis disatukan dengan balok memanjang sehingga sistem ini dapat. berlaku secara integral dalam molekul lentur. Dengan demikian, sistem yang diperoleh akan bersifat sebagai plat. Kekakuan sistem ini juga meningkat karena adanya penyatuan tersebut. Dengan demikian, tinggi struktural akan lebih kecil dibandingkan dengan sistem joist standar. Elemen kulit bertegangan ini pada umumnya dibuat tidak di lokasi, dan dibawa ke lokasi sebagai modul-modul. Kegunaannya akan semakin meningkat apabila modul-modul ini dapat dipakai secara berulang. Elemen demikian dapat digunakan pada berbagai struktur, termasuk juga sistem plat lipat berbentang besar. BALOK BOKS. Perilaku yang diberikan oleh kotak balok dari kayu lapis [lihat Gambar 8.9(c)] memungkinkan penggunaannya untuk berbagai ukuran bentang dan kondisi pembebanan. Sistem yang demikian sangat berguna pada situasi bentang besar atau apabila ada kondisi beban yang khusus. Balok boks dapat secara efisien mempunyai bentang lebih besar daripada balok homogen maupun balok berlapis. KONSTRUKSI KAYU BERAT Sebelum sistem joists ringan banyak digunakan, sistem balok kayu berat dengan papan transversal telah banyak digunakan [lihat Gambar 8.9(e)]. Balok kayu berlapisan sekarang banyak digunakan sebagai alternatif dari balok homogen. Sistem demikian dapat mempunyai kapasitas pikul beban dan bentang lebih besar daripada sistem joist. Sebagai contoh, dengan balok berlapisan, bentang yang relatif besar adalah mungkin karena tinggi elemen struktur dapat dengan mudah kita peroleh dengan menambah lapisan. Elemen demikian umumnya bertumpuan sederhana, tetapi kita 1. lingkup pekerjaan dan peraturan bangunan 405 dapat juga memperoleh, tumpuan yang mampu memikul momen dengan menggunakan konstruksi khusus. RANGKA BATANG Rangka batang kayu merupakan sistem berbentang satu arah yang paling banyak digunakan karena dapat dengan mudah menggunakan banyak variasi dalam konfigurasi dan ukuran batang. Rangka batang dapat dibuat tidak secara besar-besaran, tetapi dapat dibuat secara khusus untuk kondisi beban dan bentang tertentu. Sekalipun demikian, kita juga. membuat rangka batang secara besar-besaran (mass production). Rangka batang demikian umumnya digunakan pada situasi bentang tidak besar dan beban ringan. Rangka batang tnissed rafter pada Gambar 8.9(g) misalnya, banyak digunakan sebagai konstruksi atap pada bangunan rumah. Sistem yang terlihat pada Gambar 8.9(b) analog dengan balok baja web terbuka dan berguna untuk situasi bentang besar (khususnya untuk atap). Sistem penumpu vertikal pada struktur ini umumnya berupa dinding batu atau kolom kayu. Tahanan terhadap beban lateral pada struktur ini umumnya diperoleh dengan menggunakan dinding tersebut sebagai bidang geser. Apabila bukan dinding, melainkan kolom yang digunakan, pengekang (bracing) dapat pula digunakan untuk meningkatkan kestabilan struktur terhadap beban lateral. Peningkatan kestabilan dengan menggunakan titik hubung kaku dapat saja digunakan untuk struktur rendah, tetapi hal ini jarang dilakukan. PLAT LIPAT DAN PANEL PELENGKUNG Banyak struktur plat lengkung atau plat datar yang umumnya berupa elemen berbentang satu, yang dapat dibuat dari kayu. Kebanyakan struktur tersebut menggunakan kayu lapis. Gambar 8.9(j) dan (k) mengilustrasikan dua contoh struktur itu. PELENGKUNG Bentuk pelengkung standar dapat dibuat dari kayu. Elemen berlapisan paling sering digunakan. Hampir semua bentuk pelengkung dapat dibuat dengan menggunakan kayu. Bentang yang relatif panjang dapat saja diperoleh. Struktur-struktur ini umumnya berguna sebagai atap saja. Kebanyakan bersendi dua atau tiga, dan tidak dijepit. LAMELLA Konstruksi lamella merupakan suatu cara untuk membuat permukaan lengkung tunggal atau ganda dari potongan-potongan kecil kayu [lihat Gambar 8.9(l)]. Konstruksi yang menarik ini dapat digunakan untuk membuat permukaan silindris berbentang besar, juga untuk struktur kubah. Sistem ini sangat banyak digunakan, terutama pada struktur atap. UKURAN ELEMEN Gambar 8.10 mengilustrasikan kira-kira batas-batas bentang untuk berbagai jenis struktur kayu. Bentang "maksimum" yang diperlihatkan pada diagram ini bukanlah bentang maksimum yang mungkin, melainkan batas 1. lingkup pekerjaan dan peraturan bangunan 406 bentang terbesar yang umum dijumpai. Batasan bentang minimum menunjukkan bentang terkecil yang masih ekonomis. Juga diperlihatkan kira-kira batas-batas tinggi untuk berbagai bentang setiap sistem. Angka yang kecil menunjukkan tinggi minimum yang umum untuk sistem yang bersangkutan dan angka lainnya menunjukkan tinggi maksimumnya. Tinggi sekitar L/20, misalnya, mengandung arti bahwa elemen struktur yang bentangnya 16 ft (4,9 m) harus mempunyai tinggi sekitar 16 ft/20 = 0,8 ft (0,24 m). Kolom kayu pada umumnya mempunyai perbandingan tebal terhadap tinggi (t/h) bervariasi antara 1 : 25 untuk kolom yang dibebani tidak besar dan relatif pendek, atau sekitar 1 : 10 untuk kolom yang dibebani besar pada gedung bertingkat, Dinding yang dibuat dari elemen-elemen kayu mempunyai perbandingan t/h bervariasi dari I : 30 sampai I : 15. Gambar 8.10. Perkiraan batas bentang untuk berbagai sistem kayu Sumber: Schodek, 1999 8.3.1. Produk Alat Sambung untuk Struktur Kayu a) Alat Sambung Paku Paku merupakan alat sambung yang umum dipakai dalam konstruksi maupun struktur kayu. Ini karena alat sambung ini cukup mudah pemasangannya. Paku tersedia dalam berbagai bentuk, dari paku polos hingga paku ulir. Spesifikasi produk paku dapat dikenali dari panjang paku dan diameter paku. Ilustrasi produk paku ditunjukkan pada Gambar 8.11. 1. lingkup pekerjaan dan peraturan bangunan 407 Gambar 8.11: Beragam produk paku : paku polos, paku berlapis semen–seng, paku ulir, paku berulir biasa, paku berulir helical Sumber: Forest Products Laboratory USDA, 1999 Paku yang di beri coating umum dimaksudkan untuk ketahanan terhadap karat dan noda. Dengan begitu tampilan paku dapat dipertahankan. Namun adanya coating tersebut menyebabkan kuat cabut paku berkurang karena kehalusan coating tersebut. Tabel 8.3. Spesifikasi Ukuran Paku Sumber: PKKI, 1979 Ujung Paku. Ujung paku dengan bagian runcing yang relatif panjang umumnya memiliki kuat cabut yang lebih besar. Namun ujung yang runcing bulat tersebut sering menyebabkan pecahnya kayu terpaku. Ujung yang tumpul dapat mengurangi pecah pada kayu, namun karena ujung tumpung tersebut merusak serat, maka kuat cabut paku pun akan berkurang pula. Kepala paku. Kepala paku badap berbentuk datar bulat, oval maupun kepala benam (counter sunk) umumnya cukup kuat menahan tarikan langsung. Besar kepala paku ini umumnya sebanding dengan 1. lingkup pekerjaan dan peraturan bangunan 408 diameter paku. Paku kepala benam dimaksudkan untuk dipasang masuk – terbenam dalam kayu. Pembenaman Paku. Paku yang dibenam dengan arah tegak lurus serat akan memiliki kuat cabut yang lebih baik dari yang dibenam searah serat . Demikian halnya dengan pengaruh kelembaban. Setelah dibenam dan mengalami perubahan kelembaban, paku umumnya memiliki kuat cabut yang lebih besar dari pada dicabut langsung setelah pembenaman. Jarak Pemasangan Paku. Jarak paku dengan ujung kayu, jarak antar kayu, dan jarak paku terhadap tepi kayu harus diselenggarakan untuk mencegah pecahnya kayu. Secara umum, paku tak diperkenankan dipasang kurang dari setengah tebal kayu terhadap tepi kayu, dan tak boleh kurang dari tebal kayu terhadap ujung. Namun untuk paku yang lebih kecil dapat dipasang kurang dari jarak tersebut. Kuat cabut paku Gaya cabut maksimum yang dapat ditahan oleh paku yang ditanam tegak lurus terhadap serat dapat dihitung dengan pendekatan rumus berikut. P = 54.12 G5/2 DL (Metric: kg) P = 7.85 G5/2 DL (British: pound) (8.1) Dimana : P = Gaya cabut paku maksimum L = kedalaman paku dalam kayu (mm, inc.) G = Berat jenis kayu pada kadar air 12 % D = Diameter paku (mm, inch.) Kuat lateral paku Pada batang struktur, pemasangan paku umumnya dimaksudkan untuk menerima beban beban tegak lurus/lateral terhadap panjang paku. Pemasangan alat sambung tersebut dapat dijumpai pada struktur kuda-kuda papan kayu. Kuat lateral paku yang dipasang tegak lurus serat dengan arah gaya lateral searah serat dapat didekati dengan rumus berikut P = K D2 (8.2) Dimana: P = Beban lateral per paku D = Diameter paku K = Koefisien yang tergantung dari karakteristik jenis kayu. b) Alat sambung sekerup Sekrup hampir memiliki fungsi sama dengan paku, tetapi karena memiliki ulir maka memiliki kuat cabut yang lebih baik dari paku. Terdapat tiga bentuk pokok sekerup yaitu sekerup kepala datar, sekerup kepala oval dan sekerup kepala bundar. Dari tiga bentuk tersebut, sekerup kepala datarlah yang paling banyak ada di pasaran. Sekerup kepala oval dan bundar dipasang untuk maksud tampilan–selera. Bagian utama sekerup terdiri dari kepala, bagian benam, bagian ulir dan inti ulir. Diameter inti ulir 1. lingkup pekerjaan dan peraturan bangunan 409 biasanya adalah 2/3 dari diameter benam. Sekerup dapat dibuat dari baja, alloy, maupun kuningan diberi lapisan/coating nikel, krom atau cadmium. Ragam produk sekerup dapat ditunjukkan pada Gambar 8.12 berikut. Tabel 8.4. Nilai K untuk Perhitungan Kuat Lateral Paku dan Sekerup Sumber: Forest Products Laboratory USDA , 1999 Berat Jenis G Gr/cc K Paku (met–inc)) K Sekerup (met–inc)) K Lag Screw (met–inc)) Kayu lunak (Sof Wood) 0.29-0.42 50.04 - (1.44) 23.17 – (3.36) 23.30 – (3.38) 0.43–0.47 62.55 – (1.80) 29.79 – (4.32) 26.34 – (3.82) 0.48–0.52 76.45 – (2.20) 36.40 – (5.28) 29.51 – (4.28) Kayu Keras (Hard Wood) 0.33-0.47 50.04 - (1.44) 23.17 – (3.36) 26.34 – (3.82) 0.48-0.56 69.50 – (2,00) 29.79 – (4.32) 29.51 – (4.28) 0.57-0.74 94.72 – (2.72) 44.13 – (6.40) 34.13 – (4.95) Tabel 8.5. Ukuran Sekerup Sumber: Allen, 1999 Gambar 8.12: Tipe utama produk sekerup Sumber: Allen, 1999 Kuat Cabut Sekerup Kuat cabut sekerup yang dipasang tegak lurus terhadap arah serat (Gambar 8.13) dapat dihitung dengan rumus sebagai berikut. P = 108.25 G2 DL (Metric unit: Kg, cm ) P = 15.70 G2 DL (British unit: inch–pound) (8.3) 1. lingkup pekerjaan dan peraturan bangunan 410 Dimana: P = Beban cabut sekerup (N, Lb) G = Berat jenis kayu pada kondisi kadar air 12 % kering oven D = Diameter sekerup terbenam / shank diameter (mm, in.), L = Panjang tanam (mm,in.) Kuat lateral sekerup Kuat lateral sekerup yang dipasang tegak lurus serat dengan arah gaya lateral searah serat dapat didekati dengan rumus yang sama dengan kuat lateral paku (persamaan 8.2) Sekerup Lag (Lag Screw) Sekerup lag, seperti sekerup namun memiliki ukuran yang lebih besar dan berkepala segi delapan untuk engkol. Saat ini banyak dipakai karena kemudahan pemasangan pada batang struktur kayu dibanding dengan sambungan baut–mur. Umumnya sekerup lag ini berukuran diameter dari 5.1 – 25.4 mm (0.2 – 1.0 inch) dan panjang dari 25.4 – 406 mm (1.0 – 16 inch). Gambar 8.13. Detail pemasangan sekerup Sumber: Forest Products Laboratory USDA, 1999 Kuat Cabut Sekerup Lag. Kuat cabut sekerup lag dapat dihitung dengan formula sebagai berikut. P = 125.4 G3/2 D3/4L (Metric unit: Kg, cm ) P = 8,100 G3/2 D3/4L (British unit: inch–pound) (8.4) Dimana: P = Beban cabut sekerup (N, Lb) G = Berat jenis kayu pada kondisi kadar air 12 % kering oven D = Diameter sekerup terbenam / shank diameter (mm, in.) L = Panjang tanam (mm,in.) 1. lingkup pekerjaan dan peraturan bangunan 411 Kuat lateral sekerup lag dapat dihitung dengan rumus sebagai berikut. P = c1 c2 K D2 (8.5) Dimana: P= Beban lateral per sekerup D= Diameter sekerup K= Koefisien yang tergantung karakteristik jenis kayu (lihat Tabel 8.4) C1= Faktor pengali akibat ketebalan batang apit tersambung C2= Faktor pengali akibat pembenamam sekrup lag (lihat Tabel 8.6) Tabel 8.6: Faktor Kekuatan Lateral Sekrup Lag Sumber: Forest Products Laboratory USDA, 1999 8.3.2. Konstruksi Sambungan Gigi Walaupun sambungan ini sebenarnya malah memperlemah kayu, namun karena kemudahannya, sambungan ini banyak diterapkan pada konstruksi kayu sederhana di Indonesia utamanya untuk rangka kuda-kuda atap. Kekuatan sambungan ini mengandalkan kekuatan geseran dan atau kuat tekan / tarik kayu pada penyelenggaraan sambungan. Kekuatan tarikan atau tekanan pada sambungan bibir lurus di atas ditentukan oleh geseran dan kuat desak tampang sambungan gigi. Dua kekuatan tersebut harus dipilih yang paling lemah untuk persyaratan kekuatan struktur. P geser = ττττ ijin a b (8.6) Dimana : τ ijin = Kuat / tegangan geser ijin kayu tersambung b = lebar kayu a = panjang tampang tergeser 1. lingkup pekerjaan dan peraturan bangunan 412 P desak = ı ijin b t (8.7) Dimana : ı ijin = Kuat / tegangan ijin desak kayu tersambung b = lebar kayu t = tebal tampang terdesak Gambar 8.14. Contoh Sambungan gigi Sumber: Forest Products Laboratory USDA, 1999 8.3.3. Konstruksi Sambungan Baut Di pasaran terdapat berbagai macam baut dengan dimater dan panjang sesuai kebutuhan kayu. Untuk pemasangan harus menggunakan plat ring (washer) agar saat baut di kencangkan, tak merusak kayu. Gambar 8.15. Model baut yang ada di pasaran Sumber: Forest Products Laboratory USDA, 1999 Hampir sama dengan sambungan gigi, sambungan baut tergantung desak baut pada kayu, geser baut atau kayu. Desak baut sangat dipengaruhi oleh panjang kayu tersambung dan panjang baut. Dengan panjangnya, maka terjadi lenturan baut yang menyebabkan desakan batang baut pada kayu tidak merata. Berdasarkan NI-5 PKKI (1961) gaya per baut pada kelas kayu tersambung dapat dihitung rumus sebagai berikut : Next >