< Previous 1. lingkup pekerjaan dan peraturan bangunan 433 jembatan untuk menentukan fungsi dasar dan tampilan, sebelum dianalisa secara teoritis dan membuat detail-detail desain. Proses desain termasuk pertimbangan faktor-faktor penting seperti pemilihan sistem jembatan, material, proporsi, dimensi, pondasi, estetika dan lingkungan sekitarnya. Perencanaan jembatan secara prinsip dimaksudkan untuk mendapatkan fungsi tertentu yang optimal. Proyek jembatan diawali dengan perencanaan kondisi yang mendasar. Untuk mendapatkan tujuan yang spesifik, jembatan memiliki beberapa arah yang berbeda-beda; lurus, miring atau tidak simetris, dan melengkung horisontal seperti terlihat pada Gambar 9.4. Jembatan lurus mudah di rencanakan dan dibangun tetapi memerlukan bentang yang panjang. Jembatan miring atau jembatan lengkung umumnya diperlukan untuk jalan raya jalur cepat (expressway) atau jalan kereta api yang memerlukan garis jalan harus tetap lurus atau melengkung ke atas, sering memerlukan desain yang lebih sulit. Lebar jembatan tergantung pada keperluan lalu lintasnya. Untuk jembatan layang, lebarnya ditentukan oleh lebar jalur lalu lintas dan lebar jalur pejalan kaki, dan seringkali disamakan dengan lebar jalannya. Gambar 9.4. Arah Jembatan Sumber: Chen & Duan, 2000 Estetika – selaras dengan lingkungan Jembatan harus berfungsi tidak saja sebagai jalan, tetapi struktur dan bentuknya juga harus selaras dan meningkatkan nilai lingkungan sekitarnya. Meskipun terdapat perbedaan pandangan estetika dalam teknik jembatan, Svensson (1998) menyarankan: − Pilih sistem struktur yang bersih dan sederhana seperti balok, rangka, pelengkung atau struktur gantung; jembatan harus terlihat terpercaya dan stabil; − Terapkan proporsi tiga dimensional yang indah, antar elemen struktural atau panjang dan ukuran pintu masuk jembatan − Satukan semua garis pinggir struktur, yang menentukan tampilannya. Kekurangan salah satu bagian tersebut akan dapat menyebabkan kekacauan, kebimbangan dan perasaan ragu-ragu. Transisi dari bentuk garis lurus ke garis lengkung akan membentuk parabola. − Perpaduan yang sesuai antara struktur dan lingkungannya akan menjadi lansekap kota. Sangat perlu skala struktur dibandingkan skala lingkungan sekitarnya. 1. lingkup pekerjaan dan peraturan bangunan 434 − Pemilihan material akan sangat berpengaruh pada estetika − Kesederhanaan dan pembatasan pada bentuk struktural asli sangat penting − Tampilan yang menyenangkan dapat lebih ditingkatkan dengan pemakaian warna − Ruang di atas jembatan sebaiknya dibentuk menjadi semacam jalan yang dapat berkesan dan membuat pengendara merasa nyaman. − Strukturnya harus direncanakan sedemikian rupa sehingga aliran gaya dapat diamati dengan jelas − Pencahayaan yang cukup akan dapat meningkatkan tampilan jembatan pada malam hari. Gambar 9.5. berikut menunjukkan konsep rancangan jembatan Ruck-a-Chucky melintasi sungai Amerika sekitar 17 km dari bendungan Auburn di California. Anker kabel untuk Lengkung horisontal kabel penahan jembatan sepanjang 396 m direncanakan di sisi bukit. Meskipun jembatan ini tidak pernah dibangun, desain ini sesuai dengan topografi lingkungan sekitarnya, dan merupakan sebuah desain yang sangat memahami lingkungan. Gambar 9.5. Konsep desain jembatan Ruck-a-Chucky Sumber: Chen & Duan, 2000 e) Pemilihan Jenis Jembatan Pemilihan jenis-jenis jembatan merupakan tugas yang kompleks untuk memenuhi keinginan pemilik. Tabel 9.1. menunjukkan format matriks 1. lingkup pekerjaan dan peraturan bangunan 435 evaluasi yang dapat digunakan untuk memilih jenis-jenis jembatan. Untuk poin yang ada pada tabel tersebut untuk faktor prioritas diberikan penilaian 1 – 5 ( 1 = rendah; 2 = standar; 3 = tinggi; 4 = tinggi sekali; 5 = sangat tinggi). Tingkat kualitas diberikan dalam skala 1 – 5 (1 = kurang; 2 = cukup; 3 = bagus; 4 = sangat bagus; 5 = sempurna). Bobot penilaian berisi perkalian faktor prioritas dengan faktor tingkat kualitas dan dihitung untuk setiap alternatif jenis jembatan. Jembatan dengan jenis yang memiliki total nilai tertinggi akan menjadi alternatif terbaik. Tabel 9.1. Format matriks evaluasi untuk memilih jenis jembatan Tipe jembatan Poin (1) Prioritas (2) Kualitas (3) Bobot penilaian (2) x (3) Struktural Trafik Kemudahan konstruksi Pemeliharaan dan pemeriksaan Dampak jadwal konstruksi Estetika Lingkungan Pengembangan selanjutnya Biaya Total penilaian Tipe jembatan umumnya ditentukan oleh berbagai faktor seperti beban yang direncanakan, kondisi geografi sekitar, jalur lintasan dan lebarnya, panjang dan bentang jembatan, estetika, persyaratan ruang di bawah jembatan, transportasi material konstruksi, prosedur pendirian, biaya dan masa pembangunan. Tabel 9.2. berikut menunjukkan aplikasi panjang bentang beberapa tipe jembatan. Tabel 9.2. Tipe jembatan dan aplikasi panjang jembatan Tipe jembatan Panjang bentang (m) Contoh jembatan dan panjangnya Gelagar beton prestress 10 - 300 Stolmasundet, Norwegia, 301 m Gelagar baja I / kotak 15 - 376 Jembatan Sfalassa, Itali, 376 m Rangka baja 40 - 550 Quebec, Canada, 549 m Baja lengkung 50 - 550 Shanghai Lupu, China, 550 m Beton lengkung 40 - 425 Wanxian, China, 425 m (tabung baja berisi beton) Kabel tarik 110 - 1100 Sutong, China, 1088 m Gantung 150 - 2000 Akaski-Kaikyo, Jepang, 1991 m 9.1.3. Bentuk Struktur Jembatan Kemajuan pengetahuan dan teknologi di bidang jembatan sejalan dengan kemajuan peradaban manusia. Bentuk jembatan juga berkembang dari jembatan sederhana hingga jembatan kabel, yang penggunaannya akan disesuaikan dengan keperluan atau kebutuhan. A. Jembatan Sederhana 1. lingkup pekerjaan dan peraturan bangunan 436 Pengertian jembatan sederhana adalah ditinjau dari segi konstruksi yang mudah dan sederhana, atau dapat diterjemahkan struktur terbuat dari bahan kayu yang sifatnya darurat atau tetap, dan dapat dikerjakan/dibangun tanpa peralatan modern canggih. Sesederhana apapun struktur dalam perencanaan atau pembuatannya perlu memperhatikan dan mempertim-bangkan ilmu gaya (mekanika), beban yang bekerja, kelas jembatan, per-aturan teknis dan syarat-syarat kualitas (cheking) Di masa lampau untuk menghubungkan sungai cukup dengan menggunakan bambu, atau kayu gelondongan. Bila dibanding dengan bahan lain seperti baja, beton atau lainnya, bahan kayu merupakan bahan yang potensial dan telah cukup lama dikenal oleh manusia. Pada saat bahan baja dan beton digunakan untuk bahan jembatan, bahan kayu masih memegang fungsi sebagai lantai kendaraan. Sifat-sifat Jembatan Kayu Jembatan kayu merupakan jembatan dengan material yang dapat diperbaharui (renewable). Kayu adalah sumber daya alam yang pemanfaatannya akhir-akhir ini lebih banyak pada bidang industri kayu lapis, furnitur, dan dapat dikatakan sangat sedikit pemakaiannya dalam bidang jembatan secara langsung sebagai konstruksi utama. Pemakaian kayu sebagai bahan jembatan mempunyai beberapa keuntungan antara lain: Kayu relatif ringan, biaya transportasi dan konstruksi relatif murah, dan dapat dikerjakan dengan alat yang sederhana Pekerjaan-pekerjaan detail dapat dikerjakan tanpa memerlukan peralatan khusus dan tenaga ahli yang tinggi Jembatan kayu lebih suka menggunakan dek dari kayu sehingga menguntungkan untuk lokasi yang terpencil dan jauh dari lokasi pembuatan beton siap pakai (ready mix concrete). Dek kayu dapat dipasang tanpa bekisting dan tulangan sehingga menghemat biaya Kayu tidak mudah korosi seperti baja atau beton Kayu merupakan bahan yang sangat estetik bila didesain dengan benar dan dipadukan dengan lingkungan sekitar Dari penjelasan diatas, dapat dikatakan bahwa jembatan kayu untuk konstruksi jembatan berat dengan bentang sangat panjang sudah tidak ekonomis lagi. Jadi jembatan kayu lebih sesuai untuk konstruksi sederhana dengan bentang pendek. B. Jembatan Gelagar Baja Baja mempunyai kekuatan, daktilitas, dan kekerasan yang lebih tinggi dibanding bahan lain seperti beton atau kayu, sehingga menjadikannya bahan yang penting untuk struktur jembatan. Pada baja konvensional, 1. lingkup pekerjaan dan peraturan bangunan 437 terdapat beberapa tipe kualitas baja (high-performance steel/HPS) yang dikembangkan untuk diaplikasikan pada jembatan. HPS mempunyai keseimbangan yang optimal seperti kekuatan, kemampuan di las, kekerasan, daktilitas, ketahanan korosi dan ketahanan bentuk, untuk tampilan maksimum struktur jembatan dengan mempertahankan biaya yang efektif. Perbedaan utama dengan baja konvensional terletak pada peningkatan kemampuan di las dan kekerasan. Aspek yang lain seperti ketahan korosi dan daktilitas, sama. Jembatan gelagar merupakan struktur yang sederhana dan umum digunakan. Terdiri dari slab lantai (floor slab), gelagar (girder), dan penahan (bearing), yang akan mendukung dan menyalurkan beban gravitasi ke sub struktur. Gelagar menahan momen lendut dan gaya geser dengan menggunakan jarak bentang yang pendek. Gelagar baja dibedakan menjadi plat dan gelagar kotak. Gambar 9.6. menunjukkan komposisi struktur plat dan gelagar jembatan serta bagian penyaluran beban. Pada jembatan gelagar plat, beban hidup didukung oleh langsung oleh slab dan kemudian oleh gelagar utama. Pada jembatan gelagar kotak, pertama kali beban diterima oleh slab, kemudian didukung oleh balok melintang (stringer) dan balok lantai yang terangkai dengan gelagar kotak utama, dan akhirnya diteruskan ke substruktur dan pondasi melalui penahan. Gelagar dibedakan menjadi non komposit dan komposit dilihat dari apakah gelagar baja bekerja sama dengan slab beton (menggunakan sambungan geser) atau tidak. Pilihan penggunaan perlengkapan yang terbuat dari baja dan beton pada gelagar komposit sering merupakan suatu keputusan yang rasional dan ekonomis. Bentuk I non komposit jarang digunakan untuk jembatan bentang pendek non komposit. Gelagar Datar (Plate ) Non Komposit Gelagar datar adalah bentuk yang paling ekonomis untuk menahan lentur dan gaya geser serta memiliki momen inersia terbesar untuk berat yang relatif rendah setiap unit panjangnya. Gambar 9.7. menunjukkan sebuah jembatan gelagar datar sepanjang 30 m dan lebar 8,5 m dengan 4 gelagar utama. Beban gravitasi didukung oleh beberapa gelagar datar utama yang terbuat dari hasil pengelasan 3 bagian: sayap atas dan bawah dan penghubung-nya (web). Gambar 9.8. menunjukkan sebuah gelagar datar dan proses pembentukannya. Penghubung dan sayap-sayapnya dibentuk dari potongan plat baja dan dilas. Potongan-potongan dirangkai di pabrik dan kemudian dibawa ke lokasi pembangunan untuk didirikan. 1. lingkup pekerjaan dan peraturan bangunan 438 Gambar 9.6. Jembatan gelagar baja: (a) jembatan gelagar plat, dan (b) jembatan gelagar kotak Sumber: Chen & Duan, 2000 1. lingkup pekerjaan dan peraturan bangunan 439 Gambar 9.7. Jembatan gelagar datar: (a) tampak samping, (b) denah, dan (c) potongan Sumber: Chen & Duan, 200) Gambar 9.8. Perakitan potongan gelagar datar Sumber: Chen & Duan, 2000 1. lingkup pekerjaan dan peraturan bangunan 440 Beberapa faktor penting dalam perencanaan jembatan gelagar: Pengaku web Pengaku vertikal dan horisontal (Gambar 9.9) biasanya diperlukan apabila web relatif tipis. Momen lendut menghasilkan gaya tekan dan gaya tarik pada web, dipisahkan oleh aksis netral. Pengaku membujur/horisontal mencegah tekukan web akibat lendutan dengan memberi tekanan pada bagian atas web (setengah bagian ke atas pada gelagar penopang sederhana). Karena momen lendut terbesar berada di dekat pertengahan panjang gelagar pendukung sederhana, pengaku horisontal akan di tempatkan pada bagian ini. Pengaku horisontal tidak disarankan hingga mencapai batas ketahanannya. Pengaku vertikal mencegah tekukan-geser dan memberikan kemampuan tekukan-geser lebih elastis dengan tegangan lapangan. Pengaku horisontal ditempatkan lebih dekat dengan pendukung karena gaya geser terbesar ada pada bagian tersebut. Penahan pengaku juga diperlukan untuk menahan reaksi gaya yang besar, yang akan didesain tersendiri apabila terdapat gaya tegangan yang lain. Apabila web tidak terlalu dalam dan ketebalannya tidak terlalu tipis tidak diperlukan adanya pengaku sehingga biaya produksi bisa dikurangi. Gambar 9.9. Pengaku web: (a) tekukan web dan (b) pengaku web. Sumber: Chen & Duan, 2000 C. Jembatan Gelagar Komposit Apabila dua buah balok bersusun secara sederhana (tiered beam) seperti yang terlihat pada Gambar 9.10.a, mereka bekerja secara terpisah dan beban geser tergantung pada kekakuan lenturnya. Pada kasus tersebut, gelincir terjadi di sepanjang batas balok. Tetapi jika kedua balok dihubungkan dan gelincir ditahan seperti pada Gambar 9.10.b, mereka bekerja sebagai satu kesatuan gelagar komposit. Untuk jembatan gelagar datar komposit, gelagar baja dan slab beton dihubungkan dengan sambungan geser. Dengan cara ini, slab beton akan menyatu dengan gelagar dan menjadi komponen tekan dari momen lendutan pada saat 1. lingkup pekerjaan dan peraturan bangunan 441 gelagar datar baja mendapat gaya tarik. Gelagar komposit lebih efektif dibandingkan dengan gelagar bertingkat sederhana. Gambar 9.11. menunjukkan perbedaan antara balok tier dan balok komposit. Penampang keduanya sama dan mendapat pembebanan terpusat pada tengahnya. Momen inersia balok komposit 4 kali lebih besar daripada balok tier, sehingga defleksi yang terjadi hanya ¼ nya. Tekanan lendut maksimum di permukaan (atas atau bawah) hanya ½ dari konfigurasi balok tier. Gambar 9.10. Prinsip balok tiered dan balok komposit: (a) balok tiered, dan (b) balok komposit Sumber: Chen & Duan, 2000 Distribusi tekanan yang sesuai ditunjukkan pada gambar berikut. Poin ’S’ dan ’V’ merupakan pusat profil baja dan penampang komposit. Menurut teori, distribusi tegangan adalah linier tetapi distribusi tekanan berubah pada batas antara baja dan beton. Gambar 9.11. Potongan gelagar komposit: (a) potongan gelagar komposit, dan (b) distribusi tekanan Sumber: Chen & Duan, 2000 1. lingkup pekerjaan dan peraturan bangunan 442 Tiga tipe sambungan geser, studs, horse shoes dan blok baja ditunjukkan pada Gambar 9.12. Studs lebih umum digunakan karena lebih mudah dilas ke sayap tegangan dengan menggunakan pengelasan elektrik, tetapi sulit dalam pemeriksaannya. Jika pengelasan pada stud kurang, stud dapat bergeser dan menyebabkan kerusakan. Tipe yang lain menjadi pertimbangan karena lebih mudah pemeliharaannya. Sambungan geser diletakkan mendekati akhir bentang dimana terjadi gaya geser terbesar. Gambar 9.12. Tipe sambungan geser: (a) stud, (b) horse shoe, (c) blok baja Sumber: Chen & Duan, 2000 Gelagar Kisi-Kisi (grillage girder) Jika gelagar diletakkan berbaris dan dihubungkan melintang dengan balok lantai, beban truk didistribusikan oleh balok lantai ke gelagar. Sistem ini disebut gelagar kisi-kisi (grillage girder). Jika gelagar utama berupa gelagar datar, harus dipertimbangkan tidak adanya kekakuan dalam puntir. Di sisi lain, gelagar kotak dan gelagar beton dapat dianalisa dengan asumsi terdapat kekakuan untuk menahan puntir. Balok lantai meningkatkan kemampuan menahan puntir di seluruh sistem struktur jembatan. Gambar 9.13. menunjukkan distribusi beban dalam sistem kisi-kisi. Kisi-kisi mempunyai tiga gelagar dengan satu balok lantai di pertengahan bentangnya. Dalam hal ini, terdapat 3 nodal/titik pada perpotongan gelagar dan balok lantai tetapi hanya ada 2 persamaan ( V = 0 dan M = 0). Jika perpotongan antara gelagar utama B dan balok lantai diputuskan, dan diterapkan sepasang kekuatan tak tentu ’X’ di titik ’b’ seperti pada gambar, X dapat diperoleh dengan menggunakan kondisi yang sesuai di titik ’b’. Bila kekuatan ’X’ didapatkan, kekuatan setiap bagian gelagar dapat dihitung. Sistem struktur tersebut dapat diaplikasikan pada desain praktis jembatan gelagar datar. Gelagar Plat dengan Jarak Luas (Widely Spaced Plate Girder) Sebuah konsep desain jembatan baja dikembangkan dengan meminimalkan jumlah gelagar dan bagian-bagian fabrikasi, sehingga dapat mengurangi nilai konstruksinya. Jarak antar gelagar dibuat lebar dan Next >