< Previous 1. lingkup pekerjaan dan peraturan bangunan 453 Rangka baja terdiri atas bagian atas dan bagian rendah yang dihubungkan oleh elemen diagonal dan vertikal (elemen web). Rangka tersebut akan bertindak sesuai dengan gaya balok di atas dan bawah rangkaian seperti sayap dan pengikat diagonal akan bertindak yang sama sebagai plat web. Rangkaian terutama akan menahan momen tekuk sedangkan elemen web akan menahan gaya geser. Rangka batang merupakan rangkaian batang-batang, juga bukan merupakan plat atau lembaran, sehingga merupakan alternatif termudah untuk didirikan di lokasi dan sering digunakan untuk jembatan yang panjang Gambar 9.25. Jembatan rangka batang (truss) Sumber: Chen & Duan, 2000 Jenis Rangka Batang Gambar 9.26. Berbagai tipe rangka batang/truss: (a) Warren truss (dengan batang atas rangka lurus); (b) Warren truss (dengan batang atas rangka lengkung);(c) Warren truss dengan batang vertikal; (d) Prutt truss; (e) Howe truss; and (f) K-truss Sumber: Chen & Duan, 2000 Batang bawah rangka Batang bawah rangka bracing lateral bawah bracing lateral atas 1. lingkup pekerjaan dan peraturan bangunan 454 Pada gambar 9.26. ditunjukkan beberapa tipe rangka batang. Warren truss merupakan tipe yang paling umum dan rangka tersebut terbentuk dari segitiga samakaki yang dapat menahan gaya tekan dan gaya tarik. Elemen web Pratt truss berupa elemen vertikal dan diagonal. Elemen diagonal mengarah ke pusat dan hanya untuk menahan gaya tarik. Pratt truss sesuai untuk jembatan baja karena kemampuan menahan gaya tariknya sangat efektif. Elemen vertikal Pratt truss mendapat gaya tekan. Howe truss hampir sama dengan Pratt hanya elemen diagonalnya mengarah ke bagian akhir, menahan gaya tekan axial, dan elemen vertikal menahan gaya tarik. Jembatan kayu sering menggunakan Howe truss karena pada sambungan diagonal kayu lebih banyak mendapat gaya tekan. Dinamakan K-truss karena elemen web yang berbentuk ”K” paling ekonomis pada jembatan besar karena panjang elemen yang pendek akan mengurangi resiko tekuk. Analisa struktural dan tekanan sekunder Truss adalah sebuah bentuk struktur batang, secara teoritis dihubungkan dengan engsel membentuk segitiga yang stabil. Rangka batang terbentuk dari unit berbentuk segitiga agar stabil. Elemen-elemen diasumsikan hanya untuk menahan regangan atau gaya tekan axial. Secara statika rangka batang dapat dianalisa hanya dengan menggunakan persamaan keseimbangan. Jika kurang dari stabilitas yang disyaratkan, maka tidak dapat ditentukan hanya dengan persamaan keseimbangan saja. Ketidaksesuaian penempatan harus diperhatikan. Ketidaktetapan internal maupun eksternal rangka batang sebaiknya diselesaikan dengan menggunakan perangkat lunak/program komputer. Gambar 9.27. Titik sambung rangka batang Sumber: Chen & Duan, 2000 1. lingkup pekerjaan dan peraturan bangunan 455 Dalam prakteknya, elemen-elemen truss dihubungkan ke plat sambung dengan menggunakan baut berkemampuan tinggi (lihat gambar 9.27), bukan engsel rotation-free, sederhana karena lebih mudah di rangkai. Kondisi ’jepit’ seperti teori tidak terlihat pada bidang tersebut. Ketidaksesuaian tersebut menyebabkan tegangan sekunder (tegangan tekung) pada elemen-elemen tersebut. Tegangan sekunder didapatkan dengan analisa struktural rangka kaku dan biasanya kurang dari 20% tegangan utama axial. Jika elemen rangka batang sudah direncanakan dengan baik, angka kelangsingan batang cukup besar dan tidak ada tekuk, maka tegangan sekunder dapat diabaikan. H. Jembatan Rangka Kaku (Rigid Frame) / Jembatan Rahmen Elemen-elemen dihubungkan secara kaku dalam struktur ’rahmen’ atau rangka kaku. Tidak seperti truss dan jembatan lengkung yang akan dibicarakan pada bagian lain, seluruh elemen akan menerima baik gaya axial maupun momen tekuk. Gambar 9.28. berikut ini menunjukkan berbagai tipe jembatan rahmen. Elemen jembatan rangka kaku lebih besar dari pada sebuah tipe bangunan. Konsekuensinya pemusatan tekanan terjadi di sambungan balok dan kolom sehingga harus direncanakan dengan tepat. Pendukung jembatan rahmen, engsel atau jepit, menjadikannya struktur yang tak tentu, sehingga tidak sesuai pada kondisi pondasi yang terbenam. Reaksi pendukung berupa kemampunan horisontal dan vertikal pada engsel dan dengan penambahan momen tekuk pada tumpuan jepit. Gambar 9.28. Tipe jembatan rahmen: (a) rangka portal; (b) ∏ - Rahmen; (c) V-leg Rahmen; dan (d) Vierendeel Rahmen Sumber: Chen & Duan, 2000 1. lingkup pekerjaan dan peraturan bangunan 456 Rangka Portal Rangka portal adalah desain sederhana dan bisa dipergunakan secara luas untuk pier atau pendukung jembatan jalan raya yang diangkat karena ruang di bawahnya dapat digunakan secara efektif untuk jalan yang lain atau area parkir. Pendukung ini, telah dibuktikan penggunaannya pada gempa bumi Kobe di jepang tahun 1995, lebih ulet sehingga akan lebih kuat dan mampu menyerap energi lebih banyak dari pada pier kolom tunggal. ∏ ∏ ∏ ∏ ---- Rahmen Desain ∏ ∏ ∏ ∏ ---- Rahmen biasanya digunakan untuk jembatan di daerah pegunungan dengan struktur pondasinya yang kuatdan kokoh sehingga dapat melintasi lembah dengan bentang yang relatif panjang. Selain itu dapat juga untuk jembatan yang melintasi jalan raya jalur cepat. Seperti yang ditunjukkan pada model struktur ∏ ∏ ∏ ∏ ---- Rahmen gambar 9.29. Adanya dua lengan pendukung gelagar utama menyebabkan tegangan axial pada pusat panjang gelagar. Beban hidup pada geladak disalurkan pada gelagar utama melalui sistem lantai. Engsel tengah mungkin dimasukkan pada gelagar untuk membentuk gelagar gerber. Jembatan model A-V leg rahmen sama dengan jembatan ∏ ∏ ∏ ∏ ---- Rahmen tetapi memungkinkan bentang yang lebih panjang tanpa gaya axial di pusat bentang gelagar. Gambar 9.29. Jembatan ∏∏∏∏ - Rahmen Sumber: Chen & Duan, 2000 Jembatan Vierendeel Jembatan vierendeel merupakan rangka kaku dimana bagian atas dan bawah rangkaian dihubungkan secara kaku ke elemen vertikal. Seluruh elemen diarahkan ke arah axial dan gaya geser seperti momen lentur. Kondisi ini merupakan sistem internal yang sangat tidak tentu. Analisa rangka vierendeel harus mempertimbangkan tegangan sekunder. Bentuk jembatan ini lebih kaku daripada jembatan lengkung Langer atau Lohse yang hanya mempunyai elemen penahan gaya axial. 1. lingkup pekerjaan dan peraturan bangunan 457 I. Jembatan Pelengkung (Arch Bridge) Bingkai atau rusuk pelengkung seperti balok lingkar yang tidak hanya vertikal tetapi juga horisontal pada kedua ujungnya, dan akan mendukung reaksi vertikal dan horisontal. Gaya horisontal akan menyebabkan tegangan axial yang akan menambah momen tekuk pada rusuk lengkung. Momen tekuk akan menyebabkan keseimbangan gaya horisontal dengan beban gravitasi. Dibandingkan dengan gaya axial, akibat momen tekuk biasanya kecil. Hal itulah yang menyebabkan mengapa lengkung sering dibuat dari bahan yang mampu menahan gaya tekan tinggi seperti beton, batu, atau batu bata. Gambar 9.30. Berbagai tipe jembatan pelengkung Sumber: Chen & Duan, 2000 1. lingkup pekerjaan dan peraturan bangunan 458 Tipe Pelengkung Jembatan lengkung meliputi geladak jalan dan lengkung pendukung. Berbagai tipe pelengkung diperlihatkan pada Gambar 9.30. Garis tebal menunjukkan elemen penahan momen tekuk, geser dan gaya axial. Sedangkan garis tipis menunjukkan elemen yang hanya menerima gaya axial. Jembatan pelengkung dikelompokkan ke dalam geladak, dan tipe geladak tergantung lokasi permukaan jalan. Geladak pada semua tipe jembatan digantung oleh kolom vertikal maupun pelengkung penggantung, secara struktural sama dengan gaya axial, baik gaya tekan maupun gaya tarik pada elemen-elemennya. Perbedaannya terletak pada elemen vertikal geladak jembatan menahan gaya tekan dan penggantung menahan gaya tarik. Beban hidup hanya membebani pelengkung secara tidak langsung. Tipe struktur dasar pelengkung adalah pelengkung 2 sendi/engsel. Pelengkung 2 sendi mempunyai satu derajat tingkat ketidakpastian eksternal karena terdapat 4 reaksi akhir. Jika satu sendi ditambahkan pada mahkota pelengkung, membentuk pelengkung 3 sendi, hal ini akan menjadikan lebih pasti/kokoh. Jika akhiran diklem, menjadi pelengkung jepit/kaku, maka akan mejadi ketidakpastian tingkat ketiga. Pelengkung dibentuk oleh dua sendi dengan pengikat dan pendukung sederhana. Pelengkung yang diikat, secara eksternal dalam kondisi mantap, tetapi secara internal dalam kondisi satu derajat tingkat ketidakpastian. Struktur lantai tergantung pada pelengkung dan terpisah dari pengikat. Jembatan Langer Pelengkung Langer dianalisa dengan asumsi bahwa rusuk pelengkung hanya menahan gaya tekan axial. Rusuk pelengkung tipis, tetapi gelagar tebal dan mampu menahan momen dan geser sebaik gaya tarik axial. Gelagar jembatan langer dianggap sebagai rusuk pelengkung yang diperkuat. Gambar 9.31, menunjukkan komponen struktural jembatan Langer. Gambar 9.31. Jembatan pelengkung Langer Sumber: Chen & Duan, 2000 1. lingkup pekerjaan dan peraturan bangunan 459 Jika diagonal digunakan pada web, disebut Langer truss. Perbedaan Langer truss dengan truss standar bahwa pada rangkaian bawah berupa gelagar sebagai pengganti batang. Jembatan Langer mantap sebagai eksternal dan tidak pasti secara internal. Jembatan Langer tipe geladak sering disebut ”reversed” / kebalikan Langer. Jembatan Lohse Jembatan Lohse hampir sama dengan jembatan Langer, hanya saja jembatan Lohse lebih mampu menahan lentur di rusuk pelengkung seperti halnya gelagar. Dengan asumsi tersebut, jembatan Lohse lebih kaku daripada jembatan Langer. Distribusi momen lentur pada rusuk pelengkung dan gelagar tergantung pada rasio kekakuan dua elemen yang ditetapkan perancang. Jembatan pelengkung Lohse dapat dianggap sebagai balok terikat yang dihubungkan dengan elemen vertikal. Elemen vertikal diasumsikan hanya menahan gaya axial. Secara estetika Lohse lebih mengagumkan dibanding Langer dan lebih sesuai untuk daerah perkotaan sedangkan Langer untuk daerah pegunungan. Jembatan Pelengkung Truss dan Pelengkung Nielsen Umumnya elemen diagonal tidak digunakan pada jembatan pelengkung karena akan mempersulit analisa struktural. Bagaimanapun, kemajuan teknologi komputer mengubah pandangan tersebut. Tipe baru jembatan pelengkung, seperti pelengkung truss yang menggunakan batang diagonal truss pada elemen vertikal atau desain Nielsen Lohse yang menggunakan batang tarik sebagai diagonal. Elemen web diagonal meningkatkan kekakuan pada jembatan melebihi elemen vertikal. Seluruh elemen jembatan truss hanya menahan gaya axial. Di lain pihak, jembatan truss pelengkung menahan lentur dengan rusuk lengkung, gelagar, atau keduanya. Karena diagonal jembatan Nielsen Lohse hanya menahan gaya tarik axial, mereka mendapat tekanan sebelumnya oleh beban mati untuk mengimbangi gaya tekan oleh beban hidup. J. Bentuk Struktur Jembatan yang Lain Bentuk struktur jembatan lain yang dikenal adalah jembatan kabel. Jembatan kabel pendukung atau jembatan kabel penggantung digambarkan sebagai jembatan dengan geladak yang didukung oleh kabel fleksibel. Pada prinsipnya jembatan tersebut diklasifikasikan menjadi tipe gantung dimana geladak jembatan didukung menerus oleh kabel catenary yang direntangkan, tipe cable-stayed (tarik) dimana geladak terpisah dan digantung langsung dengan kabel penarik (stay), dan tipe kombinasi keduanya. Struktur gantung dan tarik dapat diaplikasikan untuk atap dan bangunan. 1. lingkup pekerjaan dan peraturan bangunan 460 Meskipun beban mekanisme penahan berbeda, jembatan gantung dan jembatan cable-stay (tarik) secara umum dapat digambarkan sebagai berikut: − Terdiri dari kabel, geladak jembatan dengan gelagar solid-web atau rangka batang, dan menara. − Menguntungkan untuk bentang panjang karena kabel terpusat hanya untuk tarik. Kawat (wire) baja terdiri dari kabel berkekuatan tarik yang sangat tinggi, meskipun lebih ekonomis untuk penggunaan pada jembatan pejalan kaki dengan bentang pendek hingga medium. − Keseluruhan struktur lebih fleksibel dibandingkan dengan struktur lain pada bentang yang sepadan. − Struktur yang lengkap dapat didirikan tanpa penyangga lanjutan dari tanah. − Struktur utamanya rapi dan menunjukkan fungsinya dengan tampilan transparan. Jembatan Gantung Komponen jembatan gantung (Gambar 9.32) berupa − Kabel utama yang menggantung gelagar jembatan − Menara utama mendukung kabel utama. Kadang-kadang subtower yang lebih rendah diletakkan di antara menara utama dan kabel pengangker untuk mengarahkan kabel menuju pengangkeran. − Gelagar pengaku, baik gelagar solid-web maupun truss, akan disatukan dengan geladak jembatan − Penggantung (hanger atau suspender) akan menghubungkan geladak jembatan dengan kabel utama − Pengangkeran, merupakan angker kabel utama. Biasanya berupa blok beton masif tempat bingkai angker ditanam. Gambar 9.32. Jembatan Gantung Sumber: Chen & Duan, 2000 Sistem struktur jembatan gantung dapat diklasifikasikan berdasarkan faktor: − Jumlah bentang Jembatan gantung mungkin berupa bentang tunggal, bentang dua, bentang tiga, atau bentang banyak (Gambar 9.33). Jumlah menara 1. lingkup pekerjaan dan peraturan bangunan 461 utama satu untuk bentang dua, dua untuk bentang tunggal dan bentang tiga, dan lebih dari dua untuk bentang banyak. Jembatan gantung bentang dua jarang digunakan karena kurang efisien. Jembatan gantung bentang tunggal mempunyai backstays lurus. Jembatan gantung bentang tiga yang paling umum dipakai terutama untuk jembatan bentang panjang dengan perbandingan bentang samping – bentang utama 0.2 – 0.5. Meskipun jembatan gantung bentang banyak jarang digunakan karena fleksibilitasnya besar, dapat diterapkan untuk dipelajari melintasi selat di masa mendatang. Perhatian utama untuk jembatan gantung bentang banyak adalah perencanaan menara antara dan kabel pendiriannya. − Urutan pengakuan gelagar. Pengakuan gelagar secara sederhana didukung pada setiap bentang atau menerus melewati dua atau lebih bentang. Bentuk itu disebut dua sendi dan umumnya digunakan untuk jembatan jalan. Meskipun gelagar menerus dengan pendukung antara tidak ekonomis, hal itu menguntungkan untuk jembatan rel untuk meningkatkan kelancaran kereta api. Gambar 9.33. Jembatan gantung bentang satu, tiga , dan banyak Sumber: Chen & Duan, 2000 − Pengaturan gantungan Gantungan ada yang vertikal maupun horisontal. Bahkan kini stuktur gantung dibuat seperti rangka batang yang disatukan dengan kabel utama dan geladak jembatan. − Metode pengangkeran kabel Kabel utama jembatan gantung diangkerkan kepada blok angker atau diangkerkan sendiri ke gelagar pengaku. Jembatan Kabel Tarik (Cable-Stayed Bridge) Kemungkinan desain jembatan kabel tarik (Gambar 9.34) sangat banyak karena banyaknya variasi alternatif untuk konfigurasi, sistem struktur, dan kekakuan relatif dari setiap elemen. Hal itulah yang menyebabkan mengapa jembatan kabel tarik dapat diaplikasikan bukan 1. lingkup pekerjaan dan peraturan bangunan 462 hanya untuk jembatan yang sangat panjang tetapi juga bisa untuk jembatan pejalan kaki berbentang pendek. Berlawanan dengan jembatan gantung, jembatan kabel tarik merupakan sistem struktur tertutup, dengan kata lain lebih ke arah sistem self-anchored. Karena jembatan kabel tarik dapat dibangun tanpa blok angker yang besar dan penyangga temporer, akan sangat menguntungkan diterapkan pada daerah di mana kondisi lahan tidak terlalu baik. Jika dibandingkan dengan jembatan gantung, jembatan kabel tarik lebih kaku karena kabel lurus hingga mendekati batas panjang bentang yang mungkin lebih panjang dari sebelumnya. Meskipun struktur bentang tiga paling umum digunakan, tetapi struktur dengan bentang dua bisa diterapkan dalam jembatan kabel tarik. Apabila sisi bentang sangat pendek, semua atau beberapa kabel tarik diangkerkan ke tanah. Angker tanah jembatan kabel menyebabkan seluruh struktur menjadi kaku dan lebih menguntungkan perencanaan jembatan kabel tarik yang sangat panjang. Gambar 9.34. Jenis jembatan kabel tarik: (a) jembatan bentang dua dengan angker tanah dan (b) jembatan bentang tiga dengan pendukung antara di sisi bentang Sumber: Chen & Duan, 2000 9.2. Elemen Struktur Jembatan Elemen struktur jembatan secara umum dapat dikelompokkan menjadi dua, yaitu elemen sub struktur (bagian bawah) dan super stuktur (bagian atas). Substruktur jembatan menyalurkan beban dari super struktur ke telapak dan pondasi. Elemen sub struktur ini termasuk elemen struktur pendukung vertikal bagian tengah (pier atau bent) dan pendukung pada bagian akhir (abutmen) Next >