< Previous 1. lingkup pekerjaan dan peraturan bangunan 283 Baut yang digunakan pada sambungan struktural, baik baut A325 maupun baut A490 merupakan baut berkepala segi enam yang tebal. Keduanya memiliki mur segi enam tebal yang diberi tanda standar dan simbol pabrik pada salah satu mukanya. Bagian berulir baut dengan kepala segienam lebih pendek dari pada baut standar yang lain; keadaan ini memperkecil kemungkinan adanya ulir pada tangkai baut yang memerlukan kekuatan maksimum. a) Beban leleh dan penarikan baut Syarat utama dalam pemasangan baut kekuatan tinggi ialah memberikan gaya pratarik (pretension) yang memadai. Gaya pratarik harus sebesar mungkin dan tidak menimbulkan deformasi permanen atau kehancuran baut. Bahan baut menunjukkan kelakuan tegangan-regangan (beban-deformasi) yang tidak memiliki titik leleh yang jelas. Sebagai pengganti tegangan leleh, istilah beban leleh (beban tarik awal/proof load) akan digunakan untuk baut. Beban leleh adalah beban yang diperoleh dari perkalian luas tegangan tarik dan tegangan leleh yang ditentukan berdasarkan regangan tetap (offset strain) 0,2% atau perpanjangan 0,5% akibat beban. Tegangan beban leleh untuk baut A325 dan A490 masing-masing minimal sekitar 70% dan 80% dari kekuatan tarik maksimumnya. Tabel 6.2. Beban tarikan minimum baut Sumber: Salmon dkk, 1991 b) Teknik pemasangan Tiga teknik yang umum untuk memperoleh pratarik yang dibutuhkan adalah metode kunci yang dikalibrasi (calibrated wrench), metode putaran mur (turn-of the nut), dan metode indikator tarikan langsung (direct tension indicator). Metode kunci yang dikalibrasi dapat dilakukan dengan kunci puntir manual (kunci Inggris) atau kunci otomatis yang diatur agar berhenti pada harga puntir yang ditetapkan. Secara umum, masing-masing proses 1. lingkup pekerjaan dan peraturan bangunan 284 pemasangan memerlukan minimum 2 1/4 putaran dari titik erat untuk mematahkan baut. Bila metoda putaran mur digunakan dan baut ditarik secara bertahap dengan kelipatan 1/8 putaran, baut biasanya akan patah setelah empat putaran dari titik erat. Metode putaran mur merupakan metode yang termurah, lebih handal, dan umumnya lebih disukai. Metode ketiga yang paling baru untuk menarik baut adalah metode indikator tarikan langsung. Alat yang dipakai adalah cincin pengencang dengan sejumlah tonjolan pada salah satu mukanya. Cincin dimasukkan di antara kepala baut dan bahan yang digenggam, dengan bagian tonjolan menumpu pada sisi bawah kepala baut sehingga terdapat celah akibat tonjolan tersebut. Pada saat baut dikencangkan, tonjolan-tonjolan tertekan dan memendek sehingga celahnya mengecil. Tarikan baut ditentukan dengan mengukur lebar celah yang ada. c) Perancangan sambungan baut Sambungan-sambungan yang dibuat dengan baut tegangan tinggi digolongkan menjadi: − Jenis sambungan gesekan − Jenis sambungan penahan beban dengan uliran baut termasuk dalam bidang geseran [Gambar 6.11(a)] − Jenis sambungan penahan beban dengan uliran baut tidak termasuk dalam bidang geseran [Gambar 6.11(b)] Gambar 6.11. Jenis sambungan-sambungan baut Sumber: Salmon dkk, 1991 Sambungan-sambungan baut (tipe N atau X) atau paku keling bisa mengalami keruntuhan dalam empat cara yang berbeda. − Pertama, batang-batang yang disambung akan merigalaini keruntuhan melalui satu atau lebih lubang-lubang alat penyambungan akibat bekerjanya gaya tarik (Iihat Gambar 6.12a). − Kedua, apabila lubang-lubang dibor terlalu dekat pada tepi batang tarik, maka baja di belakang alat-alat penyaTnbung akan meleteh akibat geseran (Iihat Gambar 6.12b). − Ketiga, alat penyambungnya sendiri mengalami keruntuhan akibat bekerjanya geseran (Gambar 6.12.c). 1. lingkup pekerjaan dan peraturan bangunan 285 − Keempat, satu-satu atau lebih batang tarik mengalami keruntuhan karena tidak dapat menahan gaya-gaya yang disalurkan oleh alat-alat penyambung (Gambar 6.12d). Untuk mencegah terjadinya keruntuhan maka baik sambungan maupun batang-batang yang disambung harus direncanakan supaya dapat mengatasi keempat jenis keruntuhan yang dikemukakan di atas. − Pertama, untuk menjamin tidak terjadinya keruntuhan pada bagian-bagian yang disambung, bagian-bagian tersebut harus direncanakan sedemikian rupa, sehingga tegangan tarik yang bekerja pada penampang bruto lebih kecil dari 0,6 Fy, dan yang bekerja pada penampang etektif netto lebih kecil dari 0,5 Fy. Gambar 6.12. Jenis sambungan Sumber: Salmon dkk , 1991 − Kedua, untuk mencegah robeknya baja yang terletak di belakang alat penyambung, maka jarak minimum dari pusat lubang alat penyambung ke tepi batang dalam arah yang sarna dengan arah gaya tidak boleh kurang dari 2 P/ Fu t . Di sini P adalah gaya yang ditahan oleh alat penyambung, dan t adalah tebal kritis dari bagian yang disambung. − Ketiga, untuk menjamin supaya alat penyambung tidak runtuh akibat geseran, maka jumlah alat penyambung harus ditentukan sesuai dengan peraturan, supaya dapat membatasi tegangan geser maksimum yang terjadi pada bagian alat penyambung yang kritis. − Keempat, untuk mencegah terjadinya kehancuran pada bagian yang disambung akibat penyaluran gaya dari alat penyambung ke batang maka harus ditentukan jumlah minimum alat penyarnbung yang dapat mencegah terjadinya kehancuran tersebut. 6.3.4. Sambungan las Proses pengelasan merupakan proses penyambungan dua potong logam dengan pemanasan sampai keadaan plastis atau cair, dengan atau tanpa tekanan. "Pengelasan" dalam bentuk paling sederhana telah dikenal 1. lingkup pekerjaan dan peraturan bangunan 286 dan digunakan sejak beberapa ribu tahun yang lalu. Para ahli sejarah memperkirakan bahwa orang Mesir kuno mulai menggunakan pengelasan dengan tekanan pada tahun 5500 sebelum masehi (SM), untuk membuat pipa tembaga dengan memalu lembaran yang tepinya saling menutup. Disebutkan bahwa benda seni orang Mesir yang dibuat pada tahun 3000 SM terdiri dari bahan dasar tembaga dan emas hasil peleburan dan pemukulan. Jenis pengelasan ini, yang disebut pengelasan tempa (forge welding), merupakan usaha manusia yang pertama dalam menyambung dua potong logam. Dewasa ini pengelasan tempa secara praktis telah ditinggalkan dan terakhir dilakukan oleh pandai besi. Pengelasan yang kita lihat sekarang ini jauh lebih kompleks dan sudah sangat berkembang. Asal mula pengelasan tahanan listrik (resistance welding) dimulai sekitar tahun 1877 ketika Profesor Elihu Thompson memulai percobaan pembalikan polaritas pada gulungan transformator. Dia mendapat hak paten pertamanya pada tahun 1885 dan mesin las tumpul tahanan listrik (resistance butt welding) pertama diperagakan di American Institute Fair pada tahun 1887. Pada tahun 1889, Coffin diberi hak paten untuk pengelasan tumpul nyala partikel (flash-butt welding) yang menjadi salah satu proses las tumpul yang penting. Zerner pada tahun 1885 memperkenalkan proses las busur nyala karbon (carbon arc welding) dengan menggunakan dua elektroda karbon. Pada tahun 1888, N.G. Slavinoff di Rusia merupakan orang pertama yang menggunakan proses busur nyala logam dengan memakai elektroda telanjang (tanpa lapisan). Coffin yang bekerja secara terpisah juga menyelidiki proses busur nyala logam dan mendapat hak Paten Amerika dalam 1892. Pada tahun 1889, A.P. Strohmeyer memperkenalkan konsep elektroda logam yang dilapis untuk menghilangkan banyak masalah yang timbul pada pemakaian elektroda telanjang. Thomas Fletcher pada tahun 1887 memakai pipa tiup hidrogen dan oksigen yang terbakar, serta menunjukkan bahwa ia dapat memotong atau mencairkan logam. Pada tahun 1901-1903 Fouche dan Picard mengembangkan tangkai las yang dapat digunakan dengan asetilen (gas karbit), sehingga sejak itu dimulailah zaman pengelasan dan pemotongan oksiasetilen (gas karbit oksigen). Setelah 1919, pemakaian las sebagai teknik konstruksi dan fabrikasi mulai berkembang dengan pertama menggunakan elektroda paduan (alloy) tembaga-wolfram untuk pengelasan titik pada tahun 1920. Pada periode 1930-1950 terjadi banyak peningkatan dalam perkembangan mesin las. Proses pengelasan busur nyala terbenam (submerged) yang busur nyalanya tertutup di bawah bubuk fluks pertama dipakai secara komersial pada tahun 1934 dan dipatenkan pada tahun 1935. Sekarang terdapat lebih dari 50 macarn proses pengelasan yang dapat digunakan untuk menyambung pelbagai logarn dan paduan. 1. lingkup pekerjaan dan peraturan bangunan 287 a) Proses dasar Menurut Welding Handbook, proses pengelasan adalah "proses penyambungan bahan yang menghasilkan peleburan bahan dengan memanasinya hingga suhu yang tepat dengan atau tanpa pemberian tekanan dan dengan atau tanpa pemakaian bahan pengisi." ; Energi pembangkit panas dapat dibedakan menurut sumbernya: listrik, kimiawi, optis, mekanis, dan bahan semikonduktor. Panas digunakan untuk mencairkan logam dasar dan bahan pengisi agar terjadi aliran bahan (atau terjadi peleburan). Selain itu, panas dipakai untuk menaikkan daktilitas (ductility) sehingga aliran plastis dapat terjadi walaupun jika bahan tidak mencair; lebih jauh lagi, pemanasan membantu penghilangan kotoran pada bahan. Proses pengelasan yang paling umum, terutama untuk mengelas baja struktural yang memakai energi listrik sebagai sumber panas; dan paling banyak digunakan adalah busur listrik (nyala). Busur nyala adalah pancaran arus listrik yang relatif besar antara elektroda dan bahan dasar yang dialirkan melalui kolom gas ion hasil pemanasan. Kolom gas ini disebut plasma. Pada pengelasan busur nyala, peleburan terjadi akibat aliran bahan yang melintasi busur dengan tanpa diberi tekanan. Proses lain (yang jarang dipakai untuk struktur baja) menggunakan sumber energi yang lain, dan beberapa proses ini menggunakan tekanan tanpa memandang ada atau tidak adanya pencairan bahan. Pelekatan (bonding) dapat juga terjadi akibat difusi. Dalam proses difusi, partikel seperti atom di sekitar pertemuan saling bercampur dan bahan dasar tidak mencair. b) Pengelasan Busur Nyala Logam Terlindung (SMAW) Pengelasan busur nyala logam terlindung (Shielded metal arc welding) merupakan salah satu jenis yang paling sederhana dan paling canggih untuk pengelasan baja struktural. Proses SMAW sering disebut proses elektroda tongkat manual. Pemanasan dilakukan dengan busur listrik (nyala) antara elektroda yang dilapis dan bahan yang akan disambung. Rangkaian pengelasan diperlihatkan pada Gambar 6.13. Elektroda yang dilapis akan habis karena logam pada elektroda dipindahkan ke bahan dasar selama proses pengelasan. Kawat elektroda (kawat las) menjadi bahan pengisi dan lapisannya sebagian dikonversi menjadi gas pelindung, sebagian menjadi terak (slag), dan sebagian lagi diserap oleh logam las. Bahan pelapis elektroda adalah campuran seperti lempung yang terdiri dari pengikat silikat dan bahan bubuk, seperti senyawa flour, karbonat, oksida, paduan logam, dan selulosa. Campuran ini ditekan dari acuan dan dipanasi hingga diperoleh lapisan konsentris kering yang keras. Pemindahan logam dari elektroda ke bahan yang dilas terjadi karena penarikan molekul dan tarikan permukaan tanpa pemberian tekanan. Perlindungan busur nyala mencegah kontaminasi atmosfir pada cairan logam dalam arus busur dan kolam busur, sehingga tidak terjadi penarikan 1. lingkup pekerjaan dan peraturan bangunan 288 nitrogen dan oksigen serta pembentukan nitrit dan oksida yang dapat mengakibatkan kegetasan. Gambar 6.13. Pengelasan Busur Nyala Logam Terlindung (SMAW) Sumber: Salmon dkk, 1991 Lapisan elektroda berfungsi sebagai berikut: − Menghasilkan gas pelindung untuk mencegah masuknya udara dan membuat busur stabil. − Memberikan bahan lain, seperti unsur pengurai oksida, untuk memperhalus struktur butiran pada logam las. − Menghasilkan lapisan terak di atas kolam yang mencair dan memadatkan las untuk melindunginya dari oksigen dan nitrogen dalam udara, serta juga memperlambat pendinginan. c) Pengelasan Busur Nyala Terbenam (SAW) Pada proses SAW (Submerged Arc Welding), busurnya tidak terlihat karena tertutup oleh lapisan bahan granular (berbentuk butiran) yang dapat melebur (lihat Gambar 6.14). Elektroda logam telanjang akan habis karena ditimbun sebagai bahan pengisi. Ujung elektroda terus terlindung oleh cairan fluks yang berada di bawah lapisan fluks granular yang tak terlebur. Fluks, yang merupakan ciri khas dari metode ini, memberikan penutup sehingga pengelasan tidak menimbulkan kotoran, percikan api, atau asap. Fluks granular biasanya terletak secara otomatis sepanjang kampuh (seam) di muka lintasan gerak elektroda. Fluks melindungi kolam las dari atmosfir, berlaku sebagai pembersih logam las, dan mengubah komposisi kimia dari logam las. Las yang dibuat dengan proses busur nyala terbenam memiliki mutu yang tinggi dan merata, daktilitas yang baik, kekuatan kejut (impact) yang tinggi, kerapatan yang tinggi dan tahan karat yang baik. Sifat mekanis las ini sama baiknya seperti bahan dasar. 1. lingkup pekerjaan dan peraturan bangunan 289 Gambar 6.14. Pengelasan Busur Nyala Terbenam (SAW) Sumber: Salmon dkk, 1991 d) Pengelasan Busur Nyala Logam Gas (GMAW) Pada proses GMAW (Gas Metal Arc Welding), elektrodanya adalah kawat menerus dari 1 gulungan yang disalurkan metalui pemegang elektroda (alat yang berbentuk pistol seperti pada Gambar 6.15). Perlindungan dihasilkan seluruhnya dari gas atau campuran gas yang diberikan dari luar. Mula-mula metode ini dipakai hanya dengan perlindungan gas mulia (tidak reaktif) sehingga disebut MIG (Metal Inert Gas/gas logam mulia). Gas yang reaktif biasanya tidak praktis, kecuali C02 (karbon dioksida). Gas C02, baik C02 saja atau dalam campuran dengan gas mulia, banyak digunakan dalam pengelasan baja. Argon sebenarnya dapat digunakan sebagai gas pelindung untuk pengelasan semua logam, namun, gas ini tidak dianjurkan untuk baja karena mahal serta kenyataan bahwa gas pelindung dan campuran gas lain dapat digunakan. Untuk pengelasan baja karbon dan beberapa baja paduan rendah baik (1) 75% argon dan 25% CO, ataupun (2) 100% 'C02 lebib dianjurkan [101 . Untuk baja paduan rendah yang keliatannya (toughness) penting, Pustaka [ 10] menyarankan pemakaian campuran dari 60-70% helium, 25-30% argon, dan 4-5% C02 Gambar 6.15. Pengelasan Busur Nyala Logam Gas (GMAW) Sumber: Salmon dkk, 1991 1. lingkup pekerjaan dan peraturan bangunan 290 Selain melindungi logam yang meleleh dari atmosfir, gas pelindung mempunyai fungsi sebagai berikut. − Mengontrol karakteristik busur nyala dan pernindahan logam. − Mempengaruhi penetrasi, lebar peleburan, dan bentuk daerah las. − Mempengaruhi kecepatan pengelasan. − Mengontrol peleburan berlebihan (undercutting). Pencampuran gas mulia dan gas reaktif membuat busur nyala lebih stabil dan kotoran selama pernindahan logam lebih sedikit. Pemakaian C02 saja untuk pengelasan baja merupakan prosedur termurah karena rendahnya biaya untuk gas pelindung, tingginya kecepatan pengelasan, lebih baiknya penetrasi sambungan, dan baiknya sifat mekanis timbunan las. Satu-satunya kerugian ialah pernakaian C02 menimbulkan kekasaran dan kotoran yang banyak. e) Pengelasan Busur Nyala Berinti Fluks (FCAW) Proses FCAW (Flux Cored Arc Welding) sama seperti GMAW tetapi elektroda logam pengisi yang menerus berbentuk tubular (seperti pipa) dan mengandung bahan fluks dalam intinya. Bahan inti ini sama fungsinya seperti lapisan pada SMAW atau fluks granular pada SAW. Untuk kawat yang diberikan secara menerus, lapisan luar tidak akan tetap lekat pada kawat. Gas pelindung dihasilkan oleh inti fluks tetapi biasanya diberi gas pelindung tambahan dengan gas C02. f) Pengelasan-Terak Listrik (ESW) Proses ESW (Electroslag Welding) merupakan proses mesin yang digunakan terutama untuk pengelasan dalam posisi vertikal. Ini biasanya dipakai untuk memperoleh las lintasan tunggal (satu kali jalan) seperti untuk sambungan pada penampang kolom yang besar. Logam las ditimbun ke dalam alur yang dibentuk oleh tepi plat yang terpisah dan ”sepatu" (alas) yang didinginkan dengan air. Terak cair yang konduktif melindungi las serta mencairkan bahan pengisi dan tepi plat. Karena terak padat tidak konduktif, busur nyala diperlukan untuk mengawali proses dengan mencairkan terak dan memanaskan plat. Busur nyala dapat dihentikan setelah proses berjalan dengan baik. Selanjutnya, pengelasan dilakukan oleh panas yang ditimbulkan melalui tahanan terak terhadap aliran arus listrik. Karena pemanasan akibat tahanan digunakan untuk seluruh proses kecuali sumber panas mula-mula, proses SAW sebenarnya bukan merupakan proses pengelasan busur nyala. g) Pengelasan Stud Proses yang paling umum digunakan dalam pengelasan stud (baut tanpa ulir) ke bahan dasar disebut pengelasan stud busur nyala (arc stud welding). Proses ini bersifat otomatis tetapi karakteristiknya sama seperti proses SMAW. Stud berlaku sebagai elektroda, dan busur listrik timbul dari ujung stud ke plat. Stud dipegang oleh penembak yang mengontrol waktu selama proses. Perlindungan dilakukan dengan meletakkan cincin keramik di sekeliling ujung stud pada penembak. Penembak diletakkan dalam 1. lingkup pekerjaan dan peraturan bangunan 291 posisinva dan busur ditimbulkan pada saat cincin keramik berisi logam cair. Setelah beberapa saat, penembak mendorong stud ke kolam yang mencair dan akhirnya terbentuk las sudut (fillet weld) keeil di sekeliling stud. Penetrasi sempurna di seluruh penampang lintang stud diperoleh dan pengelasan biasanya selesai dalam waktu kurang dari satu detik. 6.3.5. Kemampuan dilas dari baja struktural Kebanyakan baja konstruksi dalam spesifikasi ASTM dapat dilas tanpa prosedur khusus atau perlakuan khusus. Kemampuan dapat dilas (weldability) dari baja adalah ukuran kemudahan menghasilkan sambungan struktural yang teguh tanpa retak. Beberapa baja struktural lebih sesuai dilas dari pada yang lain. Prosedur pengelasan sebaiknya didasarkan pada kimiawi baja bukan pada kandungan paduan maksimum yang ditetapkan, karena kebanyakan hasil pabrik berada di bawah batas paduan maksimum yang ditentukan oleh spesifikasinya. 6.3.6. Jenis sambungan las Jenis sambungan tergantung pada faktor-faktor seperti ukuran dan profil batang yang bertemu di sambungan, jenis pembebanan, besarnya luas sambungan yang tersedia untuk pengelasan, dan biaya relatif dari berbagai jenis las. Sambungan las terdiri dari lima jenis dasar dengan berbagai macam variasi dan kombinasi yang banyak jumlahnya. Kelima jenis dasar ini adalah sambungan sebidang (butt), lewatan (lap), tegak (T), sudut, dan sisi, seperti yang diperlihatkan pada Gambar 6.16. Gambar 6.16. Pengelasan Busur Nyala Sumber: Salmon dkk, 1991 Sambungan Sebidang Sambungan sebidang dipakai terutama untuk menyambung ujung-ujung plat datar dengan ketebalan yang sama atau hampir sarna. Keuntungan utama jenis sambungan ini ialah menghilangkan eksentrisitas yang timbul pada sambungan lewatan tunggal seperti 1. lingkup pekerjaan dan peraturan bangunan 292 dalam Gambar 6.16(b). Bila digunakan bersama dengan las tumpul penetrasi sempurna (full penetration groove weld), sambungan sebidang menghasilkan ukuran sambungan minimum dan biasanya lebih estetis dari pada sambungan bersusun. Kerugian utamanya ialah ujung yang akan disambung biasanya harus disiapkan secara khusus (diratakan atau dimiringkan) dan dipertemukan secara hati-hati sebelum dilas. Hanya sedikit penyesuaian dapat dilakukan, dan potongan yang akan disambung harus diperinci dan dibuat secara teliti. Akibatnya, kebanyakan sambungan sebidang dibuat di bengkel yang dapat mengontrol proses pengelasan dengan akurat. Sambungan Lewatan Sambungan lewatan pada Gambar 6.17 merupakan jenis yang paling umum. Sambungan ini mempunyai dua keuntungan utama: − Mudah disesuaikan. Potongan yang akan disambung tidak memerlukan ketepatan dalam pembuatannya bila dibanding dengan jenis sambungan lain. Potongan tersebut dapat digeser untuk mengakomodasi kesalahan kecil dalam pembuatan atau untuk penyesuaian panjang. − Mudah disambung. Tepi potongan yang akan disambung tidak memerlukan persiapan khusus dan biasanya dipotong dengan nyala (api) atau geseran. Sambungan lewatan menggunakan las sudut sehingga sesuai baik untuk pengelasan di bengkel maupun di lapangan. Potongan yang akan disambung dalam banyak hal hanya dijepit (diklem) tanpa menggunakan alat pemegang khusus. Kadang-kadang potongan-potongan diletakkan ke posisinya dengan beberapa baut pemasangan yang dapat ditinggalkan atau dibuka kembali setelah dilas. − Keuntungan lain sambungan lewatan adalah mudah digunakan untuk menyambung plat yang tebalnya berlainan. Sambungan Tegak Jenis sambungan ini dipakai untuk membuat penampang bentukan (built-up) seperti profil T, profil 1, gelagar plat (plat girder), pengaku tumpuan atau penguat samping (bearing stiffener), penggantung, konsol (bracket). Umumnya potongan yang disambung membentuk sudut tegak lurus seperti pada Gambar 6.16(c). Jenis sambungan ini terutama bermanfaat dalam pembuatan penampang yang dibentuk dari plat datar yang disambung dengan las sudut maupun las tumpul. Sambungan Sudut Sambungan sudut dipakai terutama untuk membuat penampang berbentuk boks segi empat seperti yang digunakan untuk kolom dan balok yang memikul momen puntir yang besar. Next >