< Previous PEREKAYASAAN SISTEM RADIO dan TELEVISI 8 Tabel 1.2 Daerah Gelombang bumi Gelombang Angkasa Jenis gelombang yang dipakai Redaman Jangkauan Redaman Pantulan LW Sedikit 100 km sangat kuat - Gelombang bumi MW Kuat 300 km kuat Sangat kuat Gelombang bumi dan angkasa SW Sangat kuat 100 km Sedikit Kuat Gelombang angkasa VHF UHF Seluruhnya 100 km Sangat sedikit Kadang kadang Gelombang angkasa Pantulan oleh Ionosphere Pada daerah frekuensi sebagian dari gelombang angkasa kembali ke permukaan bumi. Mereka dipantulkan oleh lapisan udara yang terhampar diketinggian 50 km sampai 300 km. Lapisan udara pemantul ini disebut ionosphere. Lapisan udara yang terionisasi kuat dinamakan lapisan heaviside. Daya pantul lapisan heaviside bergantung pada frekuensi pada suatu tempat penerimaan dapat diterima gelombang bumi dan angkasa bersama, gelombang angkasa datang lebih akhir, sehingga terdapat PERGESERAN FASA. Ini akan menimbulkan FADING, dimana kuat medan penerimaan goyah. Gambar 1.2 menunjukkan pemantulan gelombang elektromagnetik oleh lapisan ionosphere. PEREKAYASAAN SISTEM RADIO dan TELEVISI 9 VHFLWMWSW Gambar 1.2. Pemantulan Gelombang Gambar 1.3. Pemantulan Gelombang Sesuai Frekuensinya Perambatan LW,MW,SW,VHF. Perambatan gelombang panjang, dimana = 1km - 10 km, dengan polarisasi vertikal pada malam hari melalui interferensi antara gelombang bumi dan angkasa dapat menimbulkan FADING DEKAT. Seperti terlihat pada gambar 1.4. PEREKAYASAAN SISTEM RADIO dan TELEVISI 10 Gambar 1.4. Terjadinya Fading Dekat Perambatan gelombang menengah, dimana = 100m -10m, dengan polarisasi vertikal. Pada jarak yang jauh dapat timbul interfrensi diantara gelombang bumi dan angkasa yang disebut FADING JAUH. Hal ini bisa terlihat seperti gambar 1.5. FADING DEKATFADING JAUHGambar 1.5. Terjadinya Fading Jauh Perambatan gelombang menengah, dimana = 100m -10m, dengan polarisasi vertikal. Antara gelombang bumi yang sangat pendek dan jatuhnya gelombang angkasa terjadi DAERAH MATI. Jarak ini disebut jarak lompatan, yang bergantung pada frekuensi hari dan tahun. Hal ini seperti ditunjukkan pada gambar 1.6. PEREKAYASAAN SISTEM RADIO dan TELEVISI 11 Gambar 1.6. Daerah Mati Perambatan gelombang sangat pendek, = 1m - 10m, pada band 1 dengan polarisasi vertikal, band II dan III dengan polarisasi horisontal dalam daerah frekuensi 30 MHz - 300 MHz dengan semakin pendeknya panjang gelombang akan memisahkan diri dari permukaan bumi, merambat diatas bumi tanpa kerugian dan LURUS seperti GELOMBANG CAHAYA. Jangkauannya dengan begitu sejauh pandangan antara antena pemancar dan penerima ( maksimum kira-kira 50 km ). Perambatan gelombang desimeter dengan = 10 Cm - 100 Cm dengan polarisasi horisontal. Dalam daerah frekuensi antara 300 MHZ - 3 GHz ( televisi band IV dan V ) mempunyai jangkauan terbatas ( 50 km ). Pada semua jangkauan gelombang untuk menaikkan daya jangkauan dapat dengan menaikkan daya pancar, menaikkan antena pemancar jauh dengan bumi. Gambar 1.7. Perambatan Gelombang Angkasa Penguatan (Gain) Antena PEREKAYASAAN SISTEM RADIO dan TELEVISI 12 Penguatan sangat erat hubungannya dengan directivity. Penguatan mempunyai pengertian perbandingan daya yang dipancarkan oleh antena tertentu dibandingkan dengan radiator isotropis yang bentuk pola radiasinya menyerupai bola. Secara fisik suatu radiator isotropis tidak ada, tapi sering kali digunakan sebagai referensi untuk menyatakan sifat – sifat kearahan antena. Penguatan daya antena pada arah tertentu didefinisikan sebagai 4π kali perbandingan intensitas radiasi dalam arah tersebut dengan daya yang diterima oleh antena dari pemancar yang terhubung. Apabila arahnya tidak diketahui, penguatan daya biasanya ditentukan dalam arah radiasi maksimum, dalam persamaan matematik dinyatakan : (dB) (2.10) G = gain antena (dB) Um = intensitas radiasi antena (watt) Pin = daya input total yang diterima oleh antena (watt) Pada pengukuran digunakan metode pembandingan (Gain-comparison Method) atau gain transfer mode. Prinsip pengukuran ini adalah dengan menggunakan antena referensi yang biasanya antena dipole standar yang sudah diketahui nilai gainnya. Prosedur ini memerlukan 2 kali pengukuran yaitu terhadap antena yang diukur dan terhadap antena referensi. Nilai gain absolut isotropik dinyatakan : (2.11) dengan : GAUT = Gain antena yang diukur (dBi) Gref = Gain antena referensi yang sudah diketahui (dBi) WRX = Daya yang diterima antena yang diukur (dBm) Wref = Daya yang diterima antena referensi (dBm) Pancaran gelombang radio oleh antena makin jauh makin lemah, melemahnya pancaran itu berbanding terbalik dengan kuadrat jaraknya, jadi pada jarak dua kali lipat kekuatannya menjadi 1/22 atau seperempatnya. Angka PEREKAYASAAN SISTEM RADIO dan TELEVISI 13 tersebut masih belum memperhitungkan melemahnya pancaran karena hambatan lingkungan dalam perjalanannya. Kecuali sifat tersebut di atas, sifat lain dari antena adalah bahwa kekuatan pancaran ke berbagai arah cenderung tidak sama. Pancaran gelombang radio oleh antena vertikal mempunyai kekuatan yang sama ke segala arah mata angin, pancaran semacam ini dinamakan omni-directional. Pada antena dipole, pancaran ke arah tegak lurus bentangannya besar sedang pancaran ke samping kecil, pancaran semacam ini disebut bi-directional. Jika ada sebuah antena memiliki penguatan (Gain) 5dB berarti antena tersebut mempunyai tegangan keluaran sekitar 5dB lebih kuat dari pada antena pembanding. Adapun antena pembanding ada 2 buah yaitu antena isotropik dan dipole. Jika perbandingan dengan antena isotropik maka penguatan (gain) antena dinyatakan dengan dBi. Sementara jika dibandingkan dengan antena dipole penguatan (gain) antena dinyatakan dengan dBd. PEREKAYASAAN SISTEM RADIO dan TELEVISI 14 Pemancaran gelombang elektromagnetis Gambar 1.8. Terjadinya pancaran gelombang Lingkaran resonator a, jika kumparan diperkecil terjadilah gambar b dan jika kedua plat dari kapasitor dijauhkan satu sama lain maka terjadilah gambar c dan d. Gambar a adalah lingkaran resonator TERTUTUP dan gambar d adalah lingkaran resonator TERBUKA, dalam kedua resonator tetap dijumpai medan magnetis dan elektris yang saling berganti. Pada resonator tertutup, kapasitansi dan induktansi terpusat pada masing-masing komponen. Sedang pada resonator terbuka, kapasitansi dan induktansinya terbagi pada sebuah kawat. Sehingga pada resonator terbuka kedua medan mendesak pada ruangan sendiri-sendiri Gambar 1.9. Medan magnet pada antena Resonator terbuka, jika bertugas mengirimkan energi frekuensi tinggi disebut ANTENA PEMANCAR. Jika untuk menerima energi frekuensi tinggi disebut ANTENA PENERIMA. antena diberi energi frekuensi tinggi melalui pemindah energi, sesuai dengan keadaan getaran energi, dalam antena mengalir arus atau terdapat tegangan antara ujung-ujung antena. Arus akan membangkitkan MEDAN MAGNIT berbentuk ring disekitar antena. Tegangan membangkitkan MEDAN LISTRIK antara ujung-ujung antena. PEREKAYASAAN SISTEM RADIO dan TELEVISI 15 Kedua medan akan dipancarkan ke udara. Medan berganti-ganti magnetis dan listrik satu sama lain mempunyai sudut 900 dan keduanya membentuk pemancaran elektromagnetis dari antena. Medan magnetis yang berjalan disebut GELOMBANG ELEKTROMAGNETIS. C. RANGKUMAN Getaran adalah gerakan bolak-balik dalam suatu interval waktu tertentu. Gelombang adalah suatu getaran yang merambat, selama perambatannya gelombang membawa energi. Pada gelombang, materi yang merambat memerlukan medium, tetapi medium tidak ikut berpindah. Apabila kita berbicara tentang propagasi maka kita menyentuh pengetahuan yang berhubungan dengan pancaran gelombang radio. Seperti kita ketahui bahwa apabila kita transmit, pesawat kita memancarkan gelombang radio yang ditumpangi oleh audio kita. Gelombang radio yang dipancarkan tadi berupa gelombang elektromagnetik bergerak menuruti garis lurus. Gelombang radio mempunyai sifat seperti cahaya, ia dapat dipantulkan, dibiaskan, direfraksi dan dipolarisasikan. Kecepatan rambatanya sama dengan kecepatan sinar ialah 300.000 km tiap detik. Di angkasa luar, ialah di luar lapisan atmosphere bumi terdapat lapisan yang dinamakan ionosphere. Ionosphere adalah suatu lapisan gas yang terionisasi sehingga mempunyai muatan listrik, lapisan ini berbentuk kulit bola raksasa yang menyelimuti bumi. Lapisan ini dapat berpengaruh kepada jalannya gelombang radio. Frekuensi gelombang radio yang mungkin dapat dipantulkan kembali adalah frekuensi yang berada pada range Medium Frequency (MF) dan High Frequency (HF). Adapun gelombang radio pada Very High Frequency (VHF) dan Ultra High Frequency (UHF) atau yang lebih tinggi Kerugian pada permukaan bumi dengan naiknya frekuensi akan semakin BESAR. Gelombang bumi dapat merambat dalam daerah gelombang panjang sampai 1000 km, dalam daerah gelombang menengah hanya sampai 300 Km dan dalam daerah gelombang pendek sampai 100 km. gelombang angkasa PEREKAYASAAN SISTEM RADIO dan TELEVISI 16 merambat secara GARIS LURUS, berhubung dengan itu angkasa tidak bisa mengikuti permukaan bumi kita. Pada daerah frekuensi sebagian dari gelombang angkasa kembali ke permukaan bumi. Mereka dipantulkan oleh lapisan udara yang terhampar diketinggian 50 km sampai 300 km. Lapisan udara pemantul ini disebut ionosphere. Lapisan udara yang terionisasi kuat dinamakan lapisan heaviside. Pancaran gelombang radio oleh antena makin jauh makin lemah, melemahnya pancaran itu berbanding terbalik dengan kuadrat jaraknya, jadi pada jarak dua kali lipat kekuatannya menjadi 1/22 atau seperempatnya. Angka tersebut masih belum memperhitungkan melemahnya pancaran karena hambatan lingkungan dalam perjalanannya. Arus akan membangkitkan MEDAN MAGNIT berbentuk ring disekitar antena. Tegangan membangkitkan MEDAN LISTRIK antara ujung-ujung antena. Kedua medan akan dipancarkan ke udara. Medan berganti-ganti magnetis dan listrik satu sama lain mempunyai sudut 900 dan keduanya membentuk pemancaran elektromagnetis dari antena. D. TUGAS 1. Siapkan sebuah transceiver VHF (2m band), boleh berupa Handy Transceiver (HT) maupun RIG atau base station. 2. Putar / atur tombol pengatur frekuensi yang ada sampai didapatkan frekuensi yang dipakai untuk percakapan. Frekuensi antara 140 MHz sampai dengan 149 MHz. 3. Amati percakapan dan sinyal orang yang berkomunikasi di frekuensi tersebut. Simpulkan hasil pengamatan diatas, apakah sinyal radio yang diamati termasuk penerimaan radiasi langsung atau tidak langsung? Jelaskan !. 4. Sekarang siapkan radio AM yang bekerja di frekuensi HF ( 3MHz – 30MHz), ini dapat berupa radio biasa atau radio Transceiver HF. 5. Atur / tuning frekuensi penerimaan sehingga didapatkan siaran radio di band frekuensi HF. PEREKAYASAAN SISTEM RADIO dan TELEVISI 17 6. Amati siaran di frekuensi tersebut. Simpulkan hasil pengamatan diatas, apakah sinyal radio yang diamati termasuk penerimaan radiasi langsung atau tidak langsung? Jelaskan !. E. TES FORMATIF 1. Gerakan bolak-balik dalam suatu interval waktu tertentu disebut .... 2. Gelombang radio mempunyai sifat dapat dipantulkan, dibiaskan, direfraksi dan dipolarisasikan, hal ini seperti sifat .... 3. Kecepatan rambat gelombang elektromagnetik di udara adalah.... 4. Lapisan udara yang mempunyai kemampuan untuk membiaskan dan memantulkan gelombang radio disebut .... 5. Pada komunikasi jarak yang jauh dapat timbul interferensi diantara gelombang bumi dan angkasa yang disebut .... F. LEMBAR JAWAB TES FORMATIF 1 .................................................................................................................... .................................................................................................................... .................................................................................................................... .................................................................................................................... 2 .................................................................................................................... .................................................................................................................... .................................................................................................................... .................................................................................................................... 3 .................................................................................................................... .................................................................................................................... .................................................................................................................... .................................................................................................................... 4 .................................................................................................................... Next >