< Previous Sinyal CMRR (dengan rasio dari penguatan sinyal beda OPsebesar 90 dB.10. Transition frequency (fT)Secara umum OPtegangan sekitar 100 dB. Kebanyakan OPtransisi fT setiap 1 MHz da Gambar 2.189 Frekuensi Respon OP-AMP 11. Slew rate (s) Untuk penormalan batas lebar band (bandwidth limitations) yang juga biasa disebut “slew rate limiting”, yaitu suatu efek untuk membatasi rate maksimum dari perubahan tegangan output peranti OP-AMP. Normalnya “slew rate” volt per mikrodetik (V/?S), dan range-nya sebesar 1 V/?S sampai 10 V/?S pada OP-AMP yang sudah populer. Efek lain dari “slew rate” adalah membuat “bandwidth” lebih besar untuk sinyal output yang rendah daripada sinyal output yang besar. 2.2.11.1.1.2. Karakteristik OP-AMP Dari parameter-parameter penting yang dipunyai OP-AMP, karakteristiknya tidak jauh berbeda dengan parameternya. Besarnya level magnitude dari tegangan beda pada input yang absolut kecil akan mempengaruhi perubahan level tegangan output. Jelasnya, 238 jika referensi tegangan yang digunakan = 1 volt, hanya diperlukan hanya sekitar 200 ?V untuk membuat output dari saturasi level negatif ke level positif. Perubahan ini disebabkan oleh sebuah pergeseran dari hanya 0,02 % pada sinyal 1 volt input. Rangkaian ini yang menyebabkanfungsinya menjadi fungsi komparator tegangan yang presisi atau seimbang (balance detector). Gambar 2.190 Karakteristik Transfer Rangkaian Komparator Tegangan Beda ’ 2.2.11.1.2. SEJARAH PERKEMBANGAN OP-AMP Pengembangan rangkaian terpadu IC luar telah ada sejak tahun 1960, pertama telah dikembangkan pada “chip” silikon tunggal. Rangkaian terpadu itu merupakan susunan antara transistor, diode sebagai penguat beda, dan pasangan Darlington. Kemudian tahun 1963 industri semikonduktor Fairchild memperkenalkan IC OP-AMP pertama kali ?A 702, yang mana merupakan pengembangan IC OP-AMP yang lain sebelumnya, di mana tegangan sumber (catu daya) dibuat tidak sama, yaitu +Ucc = +12 V dan -UEE = -6 V, dan resistor inputnya rendah sekali yaitu (40 K?) dan gain tegangan (3600 V/V). IC tipe ?A702 ini tidak direspon oleh industri- industri lain karena tidak universal. Tahun 1965 Fairchild memperkenalkan IC MA709 merupakan kelanjutan sebagai tandingan dari ?A702. Dengan banyak kekhususan tipe ?A709 mempunyai tegangan sumber yang simetris, yaitu +UCC = 15 V dan –UEE = -15 V,resistan input yang lebih tinggi (400 K?) dan gain tegangan -+EE 239 yan lebih tinggi pula (45.000 V/v). IC ?A709 merupakan IC linier pertama yang cukup baik saat itu dan tidak dilupakan dalam sejarah dan merupakan generasi OP-AMP yang pertama kali. Generasi yang pertama OP-AMP dari Motorola yaitu MC1537. Beberapa hal kekurangan OP-AMP generasi pertama, yaitu: Tidak adanya proteksi hubung singkat. Karena OP-AMP sangat rawan terhadap hubung singkat ke ground, maka seharusnya proteksi ini penting. Suatu kemungkinan problem “latch up”. Tegangan output dapat di-“latch up” sampai pada beberapa harga yang karena kesalahan dari perubahan inputnya. Memerlukan jaringan frekuensi eksternal sebagai kompensasi (dua kapasitor dan resistor) untuk operasi yang stabil. Selanjutnya tahun 1968 teknologi OP-AMP dikembangkan oleh Fairchild dengan IC ?A741 yang telah dilengkapi proteksi hubung singkat, stabil, resistor input yang lebih tinggi (2 M?), gain tegangan yang ekstrim (200.000 V/V) dan kemampuan offset null (zerro offset). OP-AMP 741 termasuk generasi kedua dan IC yang lain juga termasuk OP-AMP generasi kedua, yaitu LM101, LM307, ?A748, dan MC1558 merupakan OP-AMP yang berfungsi secara umum sebagaimana LM307. Untuk tipe-tipe OP-AMP yang khusus seperti mengalami peningkatan dari segi kegunaan atau fungsinya seperti: LM318 (dengan kecepatan tinggi sekitar 15 MHz). Lebar band kecil dengan “slew rate” 50 V/?S. IC ?A 771 merupakan OP-AMP dengan input bias arus yang rendah, yaitu 200 pA dan “slew rate” yang tinggi 13 V/?S. Lalu ?A714 yaitu IC OP-AMP yang presisi dengan noise rendah (1,3 ?A/10C), offset tegangan yang rendah (75 ?V), offset arus yang rendah (2,8 nA). Tipe IC OP-AMP lain, yaitu ?A791 merupakan OP-AMP sebagai penguat daya (power amplifier) dengan kemampuan arus output 1A. Dan IC OP-AMP ?A776 adalah OP-AMP yang multiguna bisa diprogram. Generasi-generasi yang akhir inilah yang banyak dijumpai dalam pameran-pameran untuk pemakaian-pemakaian khusus. IC linier dalam pengembangannya tidak cukup hanya di situ saja bahkan sudah dibuat blok-blok sesuai keperluan seperti untuk keperluan konsumen (audio, radio, dan TV), termasuk keperluan industri seperti (timer, regulator, dan lain-lainnya). Bahkan belakangan ini dikembangkan OP-AMP dengan teknologi BI-FET dan “laser trimming”. Karena dengan teknologi BI-FET lebar band bisa ditekan dan “slew rate” cepat, bersama ini pula bias arus rendah dan offset input arus rendah. Contoh tipe OP-AMP BI–FET LF351, dan LF353 dengan input bias (200 pA) dan offset 240 arus (100 pA), bandwidth gain unity yang besar (4 MHz), dan “slew rate” yang cepat (13 V/MS) dan ditambah lagi pin kaki-kakinya sama dengan IC ?A741 (yang ganda) dan IC MC1458). Industri Motorola melanjutkan pengembangan OP-AMP dengan teknologi “trimming dan BI-FET” (disingkat TRIMFET) untuk memperoleh kepresisian karakteristik input dengan harga yang rendah. Contoh MC34001/MC34002/MC34004 masing-masing adalah OP-AMP tunggal, ganda, dan berjumlah empat (guard). 2.2.11.1.3. JENIS OP-AMP DAN BENTUK KEMASANNYA IC (Integrated Circuit) dibedakan ke dalam “Digital” dan “Analog”. IC Analog biasanya termasuk bagian IC linier. IC ini merupakan rangkaian integrasi kumpulan dari beberapa komponen aktif diskrit seperti transistor, diode, atau FET dan lain-lainnya serta komponen pasif seperti resistor, kapasitor, dan lain-lainnya. IC linier biasanya digunakan sebagai penguat, filter, pengali frekuensi (frequency multiplier) serta modulator yang biasanya memerlukan komponen dari luar agar sempurna seperti kapasitor, resistor, dan lain-lainnya. Mayoritas IC linier adalah OP-AMP, yang biasanya digunakan sebagai penguat, filter aktif, integrator, dan diferensiator serta untuk aplikasi-aplikasi lainnya. Sedangkan OP-AMP yang untuk keperluan rangkaian khusus seperti aplikasi komparator, regulator tegangan suplai, dan fungsi-fungsi khusus yang lainnya termasuk penguat daya besar. Beberapa fungsi IC linier yang umum dan khusus akan diberikan lengkap beserta contohnya, termasuk kode produksi sampai ke bentuk model kemasannya. 2.2.11.1.3.1. Jenis IC Linier Berdasarkan Fungsi dan Fabrikasi IC linier atau analog yang fungsi umumnya digunakan pada rangkaian-rangkaian integrator, diferensiator, penguat penjumlah (summing amplifier) atau yang lainnya. Contoh IC yang umum adalah LM/?A741 atau tipe 351. Di sisi lain untuk IC linier yang khusus (spesial) biasanya hanya digunakan pada aplikasi-aplikasi khusus. Contoh untuk tipe LM380 hanya bisa digunakan pada aplikasi penguat audio (audio amplifier). Tipe seri IC linier mempunyai pengertian yang berbeda sesuai dengan fabrikasi atau pabrik pembuat IC tersebut. Di Amerika saja sekitar 30 industri memproduksi IC sebanyak 1 juta lebih setiap tahunnya. Masing- 241 masing industri mempunyai kode-kode tertentu dan tanda-tanda khusus untuk penomorannya. Berikut ini diberikan tipe dan inisial serta penomoran dan kode produksi IC linier yang beredar di pasar elektronika selama ini: Nama Industri: Inisial/kode/tipe - Fairchild ?A; ?AF - National Semiconductor LM; LH; LF; TBA - Motorola MC; MFC - R C A CA; RD - Texas Instruments SN - Sprague ULN; ULS; ULX - Intersil ICL; IH - Siliconix, Inc. L - Signetics N/S; NE/SE; SU - Burr-brown BB Selain industri pembuat IC linier tersebut masih banyak lagi seperti Mitsubishi, Hitachi, Matsushita, Sony, Sharp, Sanyo, dan lain-lainnya. Untuk mengenal pengertian kode dan inisial ini diberi contoh satu IC linier yang umum diproduksi oleh beberapa industri: LM741 : IC OP-AMP 741 diproduksi National Semiconductor MC17141 : IC OP-AMP 741 diproduksi Motorola CA3741 : IC OP-AMP 741 diproduksi R C A SN52741 : IC OP-AMP 741 diproduksi Texas Instruments N5741 : IC OP-AMP 741 diproduksi Signetics Dari tipe di atas dapat dijelaskan bahwa angka tiga digit terakhir masing-masing industri IC menyatakan tipe Op-AMP, yaitu 741, dan semua industri membuat dengan spesifikasi yang sama yaitu internasional. Untuk mendapatkan informasi yang banyak dan khusus biasanya pembuat IC selalu menyertakan pembuatan buku data (data book) sebagai referensi atau petunjuk. Beberapa IC linier mempunyai kemampuan dan kelompok yang berbeda-beda, seperti kelas A, C, E, S, dan SC. Sebagai contoh, IC 741, 741A, 741C, 741E, 741S, dan 741SC semuanya adalah OP-AMP. Namun biasanya dibedakan menurut suhu operasi. Contoh, untuk OP-AMP keperluan militer mempunyai suhu sekitar –55oC s.d. 125oC, sedangkan OP-AMP komersial mempunyai kisaran suhu 0oC s.d. 75oC dan kisaran suhu OP-AMP industri –40oC s.d. +85oC. Di sisi lain untuk 741A dan 741E merupakan improvisasi dari tipe 741 dan 741C, yang masing-masing mempunyai spesifikasi yang lebih. IC 741C dan 741E merupakan IC yang identik dengan 741 dan 741A dengan 242 kisaran suhu 0oC s.d. 75sekitar –55oC s.d. 125AMP tipe militer dan komersial yang masingrate tegangan output per unit waktu lebih tinggi ratedibandingkan tipe 741 dan 741C.2.2.11.1.3.2. Bentuk Kemasan Ada tiga macam bentuk kemasan IC linier, yaitu: 1. Bentuk kemasan datar (flat pack) 2. Bentuk kemasan logam/transistor (metal or transistor pack) 3. Bentuk kemasan sisi gari ganda (dual-in-line pack) (DIP)(Dual-in Line Package) Gambar 2.191 Bentuk kemasan IC linier 2.2.11.1.4. IDENTIFIKASI PIN DAN PERANTI Secara umum tipe IC linier dikelompokkan dalam tipe kemasan (package type), tipe peranti (device type) dan tipe range temperaturnya. Dari tipe peranti (device type) dibedakan berdasarkan inisial industri pembuat dan fungsi dari peranti tersebut. Contoh IC ?A741, LM 741, dan MC1741 masing-masing telah menunjukkan fungsi IC linier yang sama, yaitu OP-AMP, tetapi dari pabrik pembuat yang berbeda yaitu masing-masing dibuat oleh industri Fairchild, National Semiconductor, dan Motorola. 243 2.2.11.1.4.1. Identifikasi Pin Identifikasi pin (kaki) IC linier adalah cara menentukan pin (kaki) IC linier secara berurutan baik untuk tipe kemasan datar (flat pack), kemasan logam (metal pack), dan kemasan dual-in-line pack (DIP). (a) DIP 234567891011121314Indeks (b) Metal Pack -+ (c) Flat pack Gambar 2.192 Cara menentukan nomor kaki (pin) IC linier Cara menentukan kaki (pin) IC ini selalu dimulai dari tanda indeks, lalu diteruskan berurutan berlawanan arah jarum jam. 2.2.11.1.4.2. Identifikasi Peranti Identifikasi peranti (device identification) adalah menentukan tipe peranti, yaitu termasuk menentukan IC OP-AMP atau bukan, dari pabrik pembuat mana, tipe kemasan yang mana, dan bahkan sampai menggunakan kisaran suhu berapa. Ini semua cukup dibaca dari data IC yang ada di badan IC, biasanya tertulis di bagian depan IC. Contoh: IC berikut ini dapat diartikan sebagai berikut: ?A 741 T C Produksi Fairchild Range temperature komersial (0o C s..d.70oC) Tipe IC OP-AMP Tipe kemasan DIP Agar lebih jelas berikut diberikan IC linier produksi lain lengkap dengan pengertian inisial dan kemasan serta kisaran suhunya. C 34001 P 0o to 70oC Produksi Motorola OP-AMP Tipe kemasan Range temperature DIP (Plastik) Komersial 244 LM 101A F Produksi National (NSC) Semiconductor kemasan flat 2.2.11.1.5. CARA PEMBUATAN SUMBER TEGANGAN Umumnya, IC linier memerlukan sumber tegangan positif dan negatif karena IC linier kebanyakan menggunakan satu atau lebih penguat beda (differential amplifier). Namun di sisi lain ada juga IC linier yang menggunakan sumber tegangan positif saja. IC tersebut di antaranya OP-AMP LM 702 dan LM 324 dan masih ada juga yang lainnya terutama OP-AMP yang mempunyai aplikasi khusus. Dan biasanya setiap seri IC mempunyai buku data sebagai manual dan referensi petunjuk pin maupun data-data lain. Sumber tegangan positif dan negatif yang sering digunakan pada OP-AMP adalah (+12 V dan -12 V); (+15 V dan -15 V), dan lain-lainnya. Sumber tegangan ini biasa diberi simbol (+UCC dan –UEE ) atau (U+ dan U-). Untuk lebih jelasnya berikut diuraikan beberapa cara pemberian dan pembuatan sumber tegangan positif dan negatif pada OP-AMP. 2.2.11.1.5.1. Pembagi Tegangan (Voltage Devider) Pembagi tegangan yang biasa digunakan untuk pemberian tegangan positif dan negatif cukup menggunakan dua buah resistor sama besar, lalu distabilkan dengan kapasitor. Hal ini dilakukan karena sumber tegangan yang dimiliki hanya satu, yaitu positif saja. Berikut gambar rangkaian cara pembagian tegangan: +-Us+-IIIRR121212+-+-CC+ UGND- UCCEE Gambar 2.193 Sistem Pembagi Tegangan Besarnya R1 = R2, dan supaya arus suplai I tidak mengalir ke resistor semua, maka (R1 + R2) harus ? 10 k?UEE bisa dihitung sebagai berikut: UCCUS2 dan UEE2 2.2.11.1.5.2. Sambungan Seri Dua Buah Sumber Tegangan Dua buah sumber tegangan, yaitu +Us dan +Us dapat disambungkan seri untuk dijadikan sumber tegangan positif dan negatif. Gambar berikut menunjukkan cara penyambungan sumber tegangan seri menggunakan dua buah sumber tegangan. 1 Gambar 2.194 Sistem Sambungan seri dari dua sumber tegangan Syarat sumber tegangan bisa disambungkan seri adalah kedua sumber tegangan ini harus simetris atau sama besar. 2.2.11.1.5.3. Sistem Sambungan Seri Dua Buah Zener Dengan memakai dua buah diode zener secara seri, maka sumber tegangan tunggal dapat dibuat menjadi positif dan negatif. Namun dalam pemasangan diode zener harus diberikan tahanan depan. Gambar berikut menunjukkan rangkaian sistem sambungan diode zener seri untuk memperoleh sumber tegangan positif dan negatif. 246 +-Us+-IR12+-+-CC+ UGND- UZD1ZD2CCEES12UzUzS Gambar 2.194 Sistem Sambungan Seri Dari Dua Buah Zener Besarnya +UCC = Uz1 dan -UEE = -Uz2 atau sama dengan +UCC = +Us - Is Rs dan untuk tegangan negatif -UEE = -Us + Is. Rs 2.2.11.1.5.4. Sistem Dua Buah Diode dan Potensiometer Cara pembuatan sumber tegangan dengan sistem ini jarang digunakan, karena sangat kesulitan untuk penyetelan potensiometer. Gambar berikut adalah rangkaian sistem dua buah diode dan potensioner . +-Us+-R+-+-+ UGND- UCCEEPD1UD1D2 Gambar 2.195 Sistem Dua Buah Diode dan Potensioner Besarnya: UCCUSUD12 , kondisi Rp di tengah (center) UEEUSUD22 , kondisi Rp di tengah (center) Next >