< PreviousKimia Pangan 349Tabel 8.13. Kestabilan vitamin C dalam makanan dan minuman setelah penyimpanan pada 23°C selama 12 bulan. Jumlah Produk Cuplikan Tersisa Rata-rata (%) Rentang (%) Serealia siap santap 4 71 60-87 Campuran minuman buah kering 3 94 91-97 Serbuk coklat 3 97 80-100 Susu murni kering, kemas udara 2 75 65-84 Susu murni kering, kemas gas 1 93 - Serbuk kedelai kering 1 81 - Persik beku 1 80 - Sari apel 5 68 58-76 Sari kranberi (Vacciniium oxycoccas) 2 81 78-83 Sari grape fruit 5 81 73-86 Minuman anggur 3 76 65-94 Minuman jeruk 5 80 75-83 Minuman berkarbonat 3 60 54-64 Sumber : DeMann, 1999 2. Vitamin B1 (tiamin) Tidak seperti vitamin lainnya, vitamin B dibedakan atas beberapa macam dan tergabung dalam vitamin B kompleks; ada vitamin B1 (tiamin), B2 (riboflavin), B3 (niasin), B6 (piridoksin), dan B12 (kobalamin). Masing-masing punya peran yang berbeda. Struktur kimia dan sintesis tiamin untuk pertama kali berhasil dilakukan oleh Williams dan Cline pada tahun 1936. a. Klasifikasi dan Struktur Istilah tiamin menyatakan bahwa zat ini mengandung sulfur (tio) dan nitrogen (amine).Molekul tiamin terdiri atas cncin pirimidin yang terikat dengan cincin tiasol. NNCH3NH2CH2SN+CH3CH2CH2OHThiamin Kimia Pangan 350N+NCH3NH2CH2HSN+CH3CH2CH2OPOOPOOOOThiamin pyrophosphat N+NCH3NH2CH2HSN+CH3CH2CH2OHClClTiamin hydrochloride N+NCH3NH2CH2HSN+CH3CH2CH2OHNO3Thiamin Mononitrat Gambar 8.23. Struktur dari berbagai bentuk tiiamin. Semuanya memiliki aktivitas Vitamin B1 (tiamin) b. Kebutuhan dan Defisiensi Sedikit tiamin terdapat hamper dalam semua makanan yang berasal dari tumbuhan dan hewan. Sumber yang baik ialah butir serealia utuh; daging organ hewan seperti hati, jantung dan ginjal dan lain sebagainya. Meskipun kandungan tiamin biasanya diukur dalam mg per 100 g makanan, satuan lain telah dipakai kadang-kadang, S.I. yang setara dengan 3 µg tiamin hidroklorida. Kebutuhan harian manusia berkaitan dengan aras karbohidrat makanan. Konsumsi minimum 1 mg per 2000 kkal dianggap suatu keharusan. Peningkatan aktivitas metabolisme, seperti yang diakibatkan oleh kerja berat, kehamilan atau penyakit, memerlukan konsumsi yang lebih tinggi (deMan, 1999). Vitamin B1 memiliki beberapa fungsi, diantaranya adalah membantu mendorong nafsu makan, metabolisme karbohidrat, berperan dalam sistem saraf dan fungsi jantung. Vitamin ini adalah koenzim penting dalam produksi energi yaitu mengubah glukosa menjadi enegi, oleh karena itu bagi diabetesi sangat dianjurkan menambah asupan B1 untuk mengatur penggunaan glukosa tubuh. Kimia Pangan 351Beberapa gejala kekurangan tiiamin diantaranya ditandai dengan berkurangnya nafsu makan, sukar buang air besar, susah tidur dan gelisah. Beri-beri adalah gejala kekurangan vitamin ini. Selain itu kekurangan thiamin sering terjadi pada pecandu minuman alkohol. Hal ini disebabkan alkohol bertentangan dengan proses penyerapan thiamin dalam pencernaan. Sementara konsumsi vitamin B1 dalam dosis tinggi (5,000-10,000 mg) dapat menyebabkan sakit kepala, iritasi, meningkatkan denyut dan menimbulkan kelemahan tubuh. c. Sifat Fisikokimia Tiamin merupakan kristal putih kekuningan yang larut dalam air. Dalam keadaan kering vitamin B1 cukup stabil. Di dalam keadaan larut, vitamin B1 hanya tahan panas bila berada dalam keadaan asam. Dalam suasana alkali, vitamin B1 mudah rusak oleh panas atau oksidasi. Tiamin secara komersial didapat sebagai tiamin hidroklorida yang lebih stabil dan aktif secara biologik (Almatsier, 2004 ). Bila ditinjau dari sifat biokimianya, dalam bentuk pirofosfat (TPP) atau difosfat (TDP), tiamin berfungsi sebagai koenzim berbagai reaksi metabolisme energi. Tiamin dibutuhkan untuk dekarboksilasi oksidatif piruvat menjadi asetil KoA dan memungkinkan masuknya substrat yang dapat dioksidasi ke dalam siklus Krebs untuk pembentukan energi. Asetil KoA yang dihasilkan enzim ini. Disamping itu merupakan prekursor penting lipida asetil kolin, yang berarti adanya peranan TPP dalam fungsi normal system syaraf. d. Pengaruh Pengolahan Tiamin adalah salah satu vitamin yang kurang kestabilannya. Berbagai operasi pemrosesan makanan dapat sangat mereduksi tiamin. Panas, oksigen, belerang dioksida, pH netral atau basa dapat mengakibatkan perusakan tiamin. Makanan dapat diautoklaf pada 1200C dengan sedikit atau tanpa kehilangan tiamin. Pada pH netral atau basa, vitamin rusak dengan pendidihan atau bahkan dengan penyimpanan pada suhu kamar. Beberapa spesies ikan mengandung enzim yang dapat merusak tiamin dengan cepat. Karena alasan ini, belerang dioksida tidak diizinkan sebagai tinambah dalam makanan yang mengandung tiamin dalam jumlah yang lumayan. Pemanggangan roti putih dapat mengakibatkan kehilangan tiamin 20%. Kehilangan tiamin dalam pemrosesan susu ialah sebagai berikut: pasteurisasi 3-20%, sterilisasi 30-50%, pengering semprot 10% dan penggilingan 20-30%. Bukan hanya karena penggilingan saja kandungan tiamin berkurang, tetapi penyimpanan butir gandum utuhpun dapat berakibat kehilangan vitamin ini (DeMan, 1997). Kimia Pangan 3523. Vitamin B2 ( Ribloflavin) Vitamin B2 ditemukan sebagai pigmen kuning kehijauan yang bersifat fluoresen ( mengeluarkan cahaya ) dalam susu pada tahun 1879 dan fungsi biologiknya baru ditemukan pada tahun 1932. Vitamin ini disintesis pada tahun 1935 dan dinamakan riboflavin (Anonymous, 2004). a. Klasiffikasi dan Struktur Struktur riboflavin terdiri atas cincin isoaloksazin dengan rantai samping ribitil. Vitamin ini merupakan komponen dari dua koenzim, Flavin mononukleotida (FMN) dibentuk dengan dikaitkannya ester fosfat pada rantai samping ribitil. Flavin Adenin Difosfat ( FAD ) dibentuk bila FMN pada rantai sampingnya dikaitkan dengan adenine monofosfat. Enzim- enzim flavoprotein yang mengandung FMN dan FAD terikat pada bermacam apoenzim dan terlibat dalam reaksi oksidasi-reduksi berbagai jalur metabolisme yang berpengaruh terhadap respirasi sel ( Almatsier, 2004). CH3CH3NONHNOCH2(CHOH)3CH2OHRiboflavin NNHNNCH3CH3OOCH2(CHOH)2CH2OPOPOOOOOCH2ONOHOHNNNNH2Flavin Mononukleotida Flavin Adenin Dinukleotide Gambar 8.24 . Struktur Riboflavin, FMN dan FAD b. Kebutuhan dan Defisiensi Vitamin B12 Pada umumnya, Riboflavin makanan berada dalam bentuk nukleotida, ester asam fosfat atau terikat pada protein. Hanya dalam susu saja riboflavin kebanyakan dalam bentuk bebas. Vitamin B2 memiliki fungsi diantaranya memperbaiki kulit dan mata, serta membantu produksi energi antara sel. Kimia Pangan 353Defisiensi vitamin ini adalah berkurangnya kepekaan terhadap cahaya, Kekurangan Riboflavin biasanya dihubungkan dengan kekurangan tiamin dan niacin. Tanda- tanda yang muncul akibat kekurangan Riboflavin bersifat menyebar, tetapi secara khusus dapat dilihat pada jaringan epithethial. Disamping itu biasanya kulit menjadi kering dan bersisik, munculnya angular stomatitis (pecah di sudut bibir, serta gangguan kulit sekitar hidung dan bibir), lidah keungu- unguan dan bengkak, rasa terbakar, dan terjadi iritasi pada mata. Tidak ada kasus mengenai keracunan riboflavin yang telah diobservasi. Batas atas keamanan untuk riboflavin belum ditentukan berkaitan dengan ketiadaan data selama ini mengenai efek negatif yang timbul bila mengkonsumsi riboflavin secara berlebihan. The Food and Nutrition Board of the Institute of Medicine merekomendasikan bahwa sebaiknya riboflavin dikonsumsi hanya dari sumber makanan saja. Hal ini dilakukan untuk mencegah intake level racun yang potensial. c. Sifat Fisikokimia Dalam bentuk murni, riboflavin adalah kristal kuning, dan larut air, tahan panas, oksidasi dan asam, tetapi tidak tahan alkali dan cahaya terutama sinar ultraviolet (Almatsier, 2004). Vitamin ini mantap terhadap panas dalam bentuk kering atau dalam medium asam (Harris dan Karmas, 1989 ). Molekul vitamin B2 terdiri atas satuan d-ribitol yang terikat pada cincin isoaloksazina, Perubahan sekecil apapun dalam molekul mengakibatkan hilangnya aktivitas vitamin. Larutan riboflavin dalam air berwarna kuning dengan fluoresensi hijau- kekuningan. Karena pengaruh cahaya dan pH basa, riboflavin diubah menjadi lumiflavin, senyawa tak aktif dengan fluoresensi hijau- kekuningan. Pada kondisi asam, Riboflavin dirubah menjadi turunan tak aktif yang lain, lumikrom dan ribitol. Senyawa ini mempunyai Fluoresensi biru. Perubahan menjadi lumiflavin dalam susu mengakibatkan kerusakan asam askorbat (deMan, 1999). Gambar 8.25 . Perubahan fotokimia Riboflavin menjadi lumikrom dan lumiflavin Kimia Pangan 354 Selain bersifat stabil terhadap panas dan dalam larutan asam, Riboflavin merupakan oksidator yang agak kuat, pada pH netral maupun basa (Harris dan Karmas, 1989 ). Gambar 8.26. Kemampuan oksidasi-reduksi Flavin Berdasarkan sifat biokimia yang dimilikinya, Riboflavin termasuk kelompok vitamin yang larut dalam air, dan merupakan energi pendukung untuk proses metabolisme dan biosintesis dari sejumlah persenyawaan termasuk dalam bentuk coenzyme, seperti flavin adenine dinucleotide (FAD) and flavin adenine mononucleotide (FMN). Riboflavin juga berperan dalam aktivasi dan pendukung aktivitas berbagai jenis vitamin seperti vitamin B6, folate, niacin, dan vitamin K. d. Pengaruh Pengolahan Riboflavin sangat peka terhadap cahaya, dan laju kerusakannya meningkat dengan naiknya pH dan suhu. Reduktor seperti asam askorbat, disertai cahaya, dapat menyebabkan kerusakan, misalnya kerusakan susu dalam botol yang terbuat dari kaca bening. Riboflavin dalam susu pada kondisi seperti itu akan mengalami kerusakan sebesar 50% dalam 2 jam. (Harris dan Karmas, 1989 ). Susu termasuk sumber utama riboflavin, maka digunakan kemasan yang bersifat opaque atau lightblocking mengingat Riboflavin bersifat larut dalam air dan stabil terhadap panas, tetapi sensitif terhadap kerusakan yang diakibatkan oleh adanya cahaya. Hal tersebut menunjukkan sifat bahan pengemas dapat mempengaruhi derajat kerusakan Riboflavin secara bermakna. Tampaknya panjang gelombang cahaya yang terlibat pada kerusakan riboflavin terdapat di daerah spectrum tampak di bawah 500 sampai 520 nm (DeMan, 1997). Sama dengan vitamin B lainnya, riboflavin hilang pada saat penggilingan biji- bijian. Untuk menutupi kekurangan ini, biasanya dilakukan penambahan vitamin pada tepung, namun Riboflavin bukan termasuk vitamin yang ikut ditambahkan. pada beras putih karena dapat menyebabkan warna kuning/ yellowish pada produk. e. Analisis Metode Fisik - Penentuan spektrum absorpsi Penentuan spektrum absorpsi sinar UV untuk vitamin B2 hanya cocok untuk Kimia Pangan 355larutan riboflavin murni. Hal ini pun masih memiliki kelemahan karena sangat peka terhadap cahaya. - Pengukuran spektrum fluoresensi Vitamin B2 dapat diukur berdasarkan sifatnya yang dapat berfluoresensi dengan panjang gelombang maksimum 565 nm pada pH 6. Metode Biokimia Pada metode pengukuran Riboflavin adenin dinukleotida, senyawa nukleotida diukur berdasarkan kemampuannya untuk berikatan dengan d—asam-amino olsidase Metode Biologi Pada tes bakteri asam laktat, metode ini berdasarkan kebutuhan Lactobacillus caseii akan vitamin B2 untuk pertumbuhan. Metode ini tidak hanya mengukur riboflavin bebas tetapi juga riboflavin terikat. (koenzim atau enzim). 4. Vitamin B3 (niasin) Identifikasi niasin erat berkaitan dengan penelitian tentang penyebab dan pengobatan pellagra, suatu penyakit yang umum ditemukan pada abad ke – 18 di Spanyol dan Itali. a. Klasifikasi dan Struktur Niacinamide ( nicotinamide) adalah salah satu bentuk dasar niasin yang termasuk dalam vitamin B-Complex. Niasin digunakan sebagai suatu istilah kolektif untuk mengacu pada keduanya, nicotinamide maupun nicotinic acid. Nicotinamide dan nicotinic acid mempunyai aktivitas vitamin yang serupa, tetapi mereka memiliki aktivitas farmakologis sangat berbeda (Anonymous, 2004). Bentuk niasin sebagai nikotinamida kemudian diisolasi dari Nikotinamida Adenin Dinukleotida Fosfat (NADP) dan Nikotinamida Adenin Dinukleotida (NAD). Hubungan antara triptofan dan niasin ditemukan melalui eksperimen pada manusia yang mengukur metabolisme niasin sesudah diberi beberapa dosis triptofan. Ternyata triptofan adalah prekursor dari niasin ( Almatsier, 2004). Kimia Pangan 356NNNNNH2OOHOR (H or PO3)CH2OPOPOOOOCH2OOOHOHN+CONH2NCONH2NCOOHNicotinamidecotinamideNicotinamideacid Gambar 8.27. Struktur nicotinic acid, nicotinamide dan nicotinamide adenine dinucleotide (phosphate) b. Kebutuhan dan Defisiensi Vitamin B3 Kebutuhan manusia akan niasin berkaitan dengan pemasukan triptofan. Protein hewan mengandung kira-kira 1,4% triptofan, protein sayur sekitar 1%. Pemasukan 60 mg triptofan melalui makanan dianggap setara dengan 1 mg niasin. Dosis kebutuhan harian untuk orang dewasa, dinyatakan sebagai niasin, 6,6 mg per 1000 kcal, dan tidak kurang dari 13 mg jika jumlah kalori kurang dari 2000kcal (deMann, 1999). Nikotinamida dalam dosis farmakologis tidak memiliki aktivitas antihyperlipidemic, maupun kemampuan untuk menyebabkan niacin-flush. Berdasarkan bukti yang ada, bagaimanapun, dosis nikotinamida secara farmakologis dapat mencegah penyakit diabetes mellitus tipe satu. Pyrazinamide, salah satu obat penting dalam perawatan tuberculosis, memiliki sifat/ keadaan yang serupa, bila dibandingkan dengan mekanisme biokimia dengan nikotinamida. Bila kekurangan vitamin ini dapat menimbulkan penyakit seperti pellagra (kerusakan kulit, lidah jadi licin, bingung, diare, lekas marah). Sebaliknya konsumsi vitamin B3 lebih dari 100 mg dapat menimbulkan rasa gatal, sakit kepala, mual, diare dan borok. Gambar. 8.28. Penderita pellagra Kimia Pangan 357c. Sifat Fisikokimia Niasin dan asam nikotinat merupakan kristal putih, yang lebih stabil dari tiamin dan riboflavin. Niasin tahan terhadap suhu tinggi, cahaya, asam, alkali dan oksidasi. Niasin tidak rusak oleh pengolahan dan pemasakan normal, kecuali kehilangan melalui air masakan yang dibuang. Niasin mudah diubah menjadi bentuk aktif nikotinamida. Vitamin B3 memiliki peran secara biokimia yang ditunjukkan dengan beberapa fungsi, di antaranya adalah peranannya dalam sintesis lemak, pernapasan jaringan dan penggunaan karbohidrat, membentuk nafsu makan yang baik, membantu pencernaan, serta memperbaiki kulit, saraf, dan saluran pencernaan ( Anonymous, 2004). Nicotinamida berfungsi di dalam tubuh sebagai koenzim NAD dan NADP ( NADH dan NADPH adalah bentuk reduksinya). Koenzim- koenzim ini diperlukan dalam reaksi oksidasi- reduksi pada glikolisis, metabolisme protein, asam lemak, pernafasan sel dan detoksifikasi, Peranannya adalah melepas dan menerima atom hydrogen. NAD juga berfungsi dalam sintesis glikogen ( Almatsier, 2004). d. Pengaruh Pengolahan Niasin amida sebagian terhirolisis oleh asam dan basa, tetapi menghasilkan niasin dengan aktivitas hayati yang sama. Perlu diketahui juga bahwa niasin langsung tercuci pada proses pengukusan dan pencucian. Vitamin ini dapat rusak oleh reaksi enzim dalam proses pemeraman daging (Harris dan Karmas, 1989 ). Niasin barangkali merupakan vitamin B yang paling stabil. Senyawa ini tidak terpengaruh oleh cahaya, panas, oksigen, asam atau basa. Kehilangan utama yang diakibatkan oleh pemrosesan ialah pelarutan dalam air pemroses. Pemutihan sayur dapat menyebabkan kehilangan sekitar 15%. Proses yang menggunakan air garam dapat mengakibatkan kehilangan sampai 30%. Pemrosesan susu, seperti pasteurisasi, pensterilan, penguapan dan pengeringan pengaruhnya kecil bahkan tidak berpengaruh terhadap asam nikotinat. Sebenarnya semua niasin dalam susu terdapat dalam bentuk nikotinamida. Dalam banyak makanan, penggunaan panas, seperti pemanggangan dan pembakaran, meningkatkan jumlah niasin yang tersedia. Ini adalah akibat perubahan dari niasin terikat menjadi bentuk bebasnya (deMan, 1997). e. Analisis Metode Kimia - Metode sianogen bromida Prinsip metode ini adalah berdasarkan sifat turunan piridin yang dapat memberikan warna spesifik dengan sianogen bromida dan anina primer atau sekunder. Untuk mengukur kadar asam nikotinat dalam produk-produk alami, terlebih dahulu harus dilakukan hidrolisa enzimatis untuk mendapatkan asam nikotinat bebas. Kimia Pangan 358- Metode 2,4-dinitro chlorobenzen Sampel yang dianalisi dengan metode ini hanya yang mengandung asam nikotinat dan amida bebas. Oleh karena itu, sebelumnya sampel dihidrolisis terlebih dahulu. Metode Biokimia Berdasarkan tes Lacrobacillus, dilakukan pengukuran Lactobacillus arabinous. Jika suplai faktor- faktor pertumbuhan yang diperlukan bakteri tersebut telah cukup, maka jumlah asam laktat yang diproduksinya berbanding lurus (proposional) dengan jumlah asam nikotinat yang ada. Metode ini memiliki banyak kelebihan bila dibandingkan metode kimia. 5. Vitamin B6 (pyrodoxine) Pada tahun 1934, Gyorgy mengidentifikasi dan memisahkan vitamin B6 yang dapat menyembuhkan dermatitis bersisik pada tikus percobaan. Struktur kimia dan sintesis vitamin B6 atau piridoksin ditetapkan pada tahun 1939. Bentuk lain berupa piridoksamin serta bentuk aktifnya sebagai piridoksal fosfat ditetapkan pada tahun 1942. a. Klasifikasi dan Struktur Vitamin B6 pada kenyataannya tidak hanya satu jenis vitamin saja, tapi merupakan suatu kelompok tiga campuran yang saling berkaitan yaitu, piridoksin, piridoksal dan piridoksamin, dan derivatif dari phosphorylated, yaitu pyridoxine 5'-phosphate, pyridoxal 5'-phosphate dan pyridoxamine 5'-phosphate. Meskipun semua campuran ini secara teknis dikenal sebagai vitamin B6, istilah Vitamin B6 pada umumnya digunakan untuk satu jenis vitamin yaitu piridoksin. NRCH2OHHCH3OH1234564'CHOCH2NH2CH2OHNRCH2OHCH3HOPOOHOHNCH3HCH2OHCH2OHOOOHOHOHCH2OHPyridoxal R GroupPyridoxaminePyridoxineVitamin B6 5' Phosphat Pyridoxine -5'-B- D- Gukoside Gambar 8.29. Struktur Vitamin B6 Next >