< Previous 272 Peralatan Listrik Rumah Tangga ini makanan bisa bertahan lama, karena dalam keadaan dingin/beku akan menghambat/menghentikan aktivitas bakteri. Karena kemampuannya itu, mesin pendingin, yaitu kulkas dan freezer banyak digunakan di lingkungan rumah tangga dan industri. Freezer rumah tangga bisa merupakan bagian dari kulkas atau berdiri sendiri. Gambar 3.86 Kulkas tipikal Prinsip kerja mesin ini menggunakan prinsip refrigerasi, yang dalam operasinya memanfaatkan proses penguapan suatu cairan yang disebut refrigerant untuk menyerap panas. Prinsip pendinginan yang diterapkan seperti halnya bila kita oleskan air ke kulit akan kita rasakan perasaan dingin. Rasa dingin ini terjadi karena terjadi penyerapan panas oleh air yang sedang menguap. Sama halnya yang terjadi bila kita oleskan alkohol pada tubuh kita. Kita akan merasa lebih dingin lagi dibandingkan ketika yang kita oleskan adalah air. Hal ini terjadi karena titik didih/penguapan alkohol lebih rendah dari air. Kulkas dan freezer menggunakan refrigerant yang mempunyai suhu penguapan yang jauh lebih rendah sehingga didapatkan suhu yang sangat dingin. 3.3.2.2 Bagian-bagian Utama Freezer Dan Fungsinya Gambar 3.87 Bagan kelengkapan kulkas Gambar 3.87 memberikan ilustrasi tentang kelengkapan dari sebuah kulkas. Kelengkapan alat ini bisa dikelompokkan menjadi dua, yaitu perlengkapan utama dan perlengkapan penunjang. Perlengkapan utama terdiri atas lima bagian utama, yaitu: 1. Kompresor Alat ini berfungsi menyedot refrige-rant dan menekannya sehingga Peralatan Listrik Rumah Tangga 273 refrigerant keluar dari kompresor pada tekanan tinggi; 2. Pipa-penukar kalor luar Pipa-penukar kalor luar ini merupakan pipa yang dibengkok-bengkokkan dan disusun sedemikian rupa sehingga membentuk suatu kumparan yang dipasang di bagian luar atau bagian belakang dari mesin. Pipa penukar kalor ini disebut juga kumparan kondensor. Penyusunan pipa-penukar kalor sedemikian ini dimaksudkan agar lebih efektif dalam pelepasan panasnya ke udara sekitar. 3. Katup ekspansi Katup ekspansi berupa pipa dengan diameter lubang yang sangat kecil yang menghubungkan pipa yang diameter lubangnya sangat kecil (kapiler) ke besar sehingga terjadi proses penguapan refrigerant yang ada di dalamnya. 4. Pipa-penukar kalor dalam Pipa-penukar kalor dalam atau kumparan evaporator. Pipa kalor ini menerima refrigerant dengan suhu yang sangat rendah sehingga menyerap panas yang ada di sekitar nya. Karena fungsinya itu, kumparan evaporator ini ditempatkan di bagian dalam mesin, yaitu di tuang pendinginya. 5. Refrigerant Refrigerant sebagai media pendingin, merupakan media yang dialirkan ke dalam pipa-pipa penukar kalor yang digunakan untuk proses pendinginan. Media ini harus mempunyai titik didih/penguapan yang sangat rendah agar dapat mendinginkan/membekukan bahan/makanan yang ada di dalamnya. Media ini seperti amonia, CFC dan DCF. Perlengkapan penunjangnya, antara lain: x Pemanas dan timer defrost: untuk mencairkan bunga-bunga es yang menempel pada bagian pembeku yang lama prosesnya ditentukan oleh sebuah timer (pewaktu); x Kontrol kulkas dan freezer: untuk mengatur suhu dalam kulkas/freezer; x Lampu: sebagai penerang ruang dalam kulkas; x Saklar pintu: bertindak sebagai saklar untuk menghidupkan/mematikan lampu penerangan ruang dalam kulkas. Bila pintu kulkas dibuka, lampu akan menyala, sebaliknya kalau pintu ditutup lampu akan mati. x Gasket pintu: sebagai isolasi antara bagian dalam mesin dan luar sehingga pendinginan terjadi secara efektif. x Wadah limbah air: tempat air yang menetes dari akibat proses kondensasi atau defrost. 3.3.2.3 Siklus Refrigerasi Seperti yang telah dijelaskan di atas, bahwa cairan yang digunakan sebagai refrigerant adalah bahan-bahan yang mempunyai titik didih/penguapan yang sangat rendah. Misalnya amonia murni, freon (CFC). Misalnya amonia, bahan ini akan menguap pada suhu - 32ºC (-27ºF). Kondisi inilah yang membuat suhu dalam ruang pendingin kulkas/freezer menjadi sangat dingin. Bahan yang digunakan untuk proses pendinginan secara umum disebut refrigerant. 274 Peralatan Listrik Rumah Tangga Siklus pendinginan pada mesin pendingin ini diilustrasikan pada Gambar 3.88 dan 3.89. Gambar 3.88 Siklus refrigerasi Gambar 3.89 Proses pendinginan Siklus refrigerasi dapat dijelaskan sebagai berikut: 1. Kompresor menyedot refrigerant dalam bentuk gas tekanan rendah dan memampatkannya sehingga bertekanan tinggi. Akibat dari penekanan ini membuat suhu gas tersebut akan meningkat. Walaupun gas tersebut suhunya meningkat namun karena bertekanan tinggi sehingga tidak membuatnya menguap. 2. Gas yang bertekanan dan bersuhu tinggi ini dialirkan ke dalam pipa penukar-kalor bagian luar (diletakkan di belakang mesin) membuat gas ini melepaskan panas ke udara sekitarnya. Proses pelepasan panas ini membuat daerah sekitar pipa ini lebih tinggi suhunya di bandingkan daerah yang lebih jauh. 3. Setelah mengalami proses pelepas-an panas, gas menjadi dingin kembali dan berubah menjadi cairan. Walaupun sudah dalam bentuk cairan, namun tekanannya masih tinggi. 4. Dalam keadaan cair dan bertekanan ini, refrigerant kemudian dialirkan melalui katup ekspansi. Seperti yang telah dijelaskan di atas bahwa katup ekpansi ini merupakan lubang yang kecil yang pada sisi masukannya bertekanan tinggi sedangkan pada sisi keluarannya mempunyai tekanan yang rendah. Sisi yang bertekanan rendah ini terjadi karena isapan (masukan) dari kompresor. Dengan berubahnya dari tekanan tinggi ke rendah membuat cairan refrigerant akan mendidih dan menguap (contoh, amonia akan mendidih dan menguap pada suhu -32ºC (-27ºF)) dalam pipa penukar-kalor yang terletak di dalam mesin. 5. Suhu yang sangat dingin ini menyerap panas dari ruang sekitar pipa penukar-kalor ini membuat suhu ruang menjadi sangat dingin. Ruangan inilah yang digunakan sebagai ruang pendingin dalam kulkas dan freezer. Mengalirnya Peralatan Listrik Rumah Tangga 275 cairan melalui katup ekpansi biasanya diikuti dengan suara bising. Suara ini bisa kita dengarkan ketika kompresor mati (off). 6. Refrigerant dalam bentuk gas dan bertekanan rendah ini kemudian disedot dan ditekan kembali oleh kompresor sehingga siklus kembali berulang. Demikian proses pendinginan yang terjadi pada mesin pendingin secara berulang sehingga alat ini mampu mendinginkan / membekukan bahan / ma-kanan yang ada di dalamnya. Di dalam kulkas, pada umumnya dilengkapi oleh ruang kecil yang berfungsi sebagai freezer. Fungsinya bisa bermacam-macam. Di samping untuk membekukan bahan makanan juga untuk pembuatan es batu. Namun, untuk kebutuhan yang lebih besar freezer yang ada di dalam kulkas tidaklah memadai. Dan bahkan untuk keperluan pengawetan daging, ikan, dan lain-lain untuk keperluan yang lebih besar digunakan freezer yang berdiri sendiri. Walaupun begitu, tetap ada fasilitas pengaturan suhunya sehingga bisa disesuaikan dengan jenis bahan yang disimpan di dalamnya. Gambar-Gambar 3.90-3.94 berikut ini memberikan ilustrasi tentang mesin freezer. Gambar 3.90 Freezer dan pengatur suhu Gambar 3.91 Kumparan kondensor Gambar 3.92 Ventilasi udara ruang kompresor 276 Peralatan Listrik Rumah Tangga Gambar 3.93 Ruang pendingin Gambar 3.94. Lubang pembuangan limbah air 3.3.2.4 Perawatan kulkas dan freezer Seperti yang Anda ketahui bahwa permasalahan utama dari mesin pendingin adalah ketidakmampuan alat ini dalam mendinginkan ruang pendinginnya. Ada beberapa hal yang perlu diperiksa bila alat ini tidak beroperasi dengan baik. 1. Kondisi kompresor. Bila kompresor tidak berjalan dengan baik maka kompresor tidak mampu mensirkulasikan refrigerant ke seluruh sistem pipa kulkas / freezer sebagaimana mestinya. Tidak ada sirkulasi refrigerant berarti tidak terjadi efek pendinginan. Bila ini terjadi maka tidak ada pilihan lain kecuali harus mengganti kompresornya. Bila kompresor beroperasi dengan baik maka perlu dilanjutkan pada langkah berikutnya. 2. Periksa kondisi refrigerantnya. Walaupun kompresor dalam keadaan baik, kalau refrigerantnya tidak mencukupi maka pendinginannya akan kurang atau tidak ada sama sekali. Bila terjadi kekurangan refrigerant maka perlu segera diisi kembali (pemeriksaan dan pengisian harus menggunakan alat pengisian). Untuk pengisian ulang, menggunakan dasar tekanan dab suhu. Tekanan dan suhu tergantung dari jenis refrigantnya. Kalau tekanan dan suhu tetap berarti sudah penuh. 3. Bila kompresor dan refrigerant dalam kondisi normal namun alat belum dingin, maka perlu diperiksa kumparan pipa kondensor. Bila suhu pipa kondensor tetap dingin atau sama dengan suhu lingkungan maka terjadi penyumbatan pada pipa sehingga sirkulasi refrigerant tidak berjalan dengan baik atau terjadi kerusakan pada katup ekspansinya. 4. Periksa katup ekspansinya terlebih dahulu, dan bila kondisinya baik maka baru dilakukan terhadap penyumbatan yang terjadi pada pipa salurannya. Bila tidak dapat Peralatan Listrik Rumah Tangga 277 dilakukan perbaikan maka perlu penggantian pipa salurannya. 5. Bila pendinginan tidak terdistribusi seperti yang diharapkan perlu pemeriksaan terhadap blower dan saluran-saluran ventilasinya. 3.3.2.5 Pemeriksaan dan pelaporan hasil pekerjaan Setelah dilakukan perawatan perlu dilakukan pemeriksaan atas kerja tersebut. Kondisi-kondisi yang perlu diperiksa antara lain: 1. Suara kompresor harus tetap halus (normal). Bila ada suara-suara yang aneh menunjukkan kerja kompresor masih belum bagus. 2. Kemampuan pendinginannya. Kemampuan pendinginan mesin dapat dirasakan beberapa saat setelah mesin dihidupkan. Pengecekan dapat dilakukan pada ruang pendingin dan ruang freezer. Bila ada efek pendinginan menunjukkan bahwa mesin berjalan dengan baik. Pemeriksaan tidak cukup sampai di sini, namun harus dilakukan dalam waktu yang lebih lama, kurang lebih satu jam, untuk mengetahui kemampuan pendinginan secara paripurna sehingga dapat diketahui kemampuan pembekuannya pada bagian freezernya. 3. Untuk mesin-mesin pendingin besar biasanya dilengkapi dengan indikator suhu. 4. Untuk mengetahui kerja tidaknya kontrol suhu, Anda lakukan pengesetan pada saklar termostatnya. Bila suhu mencapai harga presetnya mesin akan mati sendiri. Demikan pula ketika suhu ruang pendingin di atas harga presetnya mesin akan hidup kembali. Kontrol suhu sangat penting untuk penghematan energi. Setelah dilakukan perawatan, dan pemeriksaan kinerjanya, perlu ada catatan tentang jenis kerusakan, bagian-bagian/komponen-komponen yang diperbaiki dan diganti serta catatan tentang performa mesin pasca perawatan. 3.3.3 Alat Pendingin Ruangan 3.3.3.1 Pendahuluan Untuk negara-negara tropis seperti Indonesia, alat pendingin ruangan mempunyai peranan yang sangat besar, khususnya di kota-kota besar di mana aktivitas kegiatan ekonomi berjalan dengan cepatnya. Ini kebalikan dari negara-negara bersuhu dingin, seperti di Amerika, Eropa, yang lebih membutuhkan pemanas ruangan daripada pendingin ruangan. Di sebagian besar wilayah Indonesia mempunyai suhu rata-rata lingkungan di atas 30 °C yang membuat kurang nyaman bagi para karyawan dalam menjalankan tugasnya sehari-hari, karena suhu tersebut jauh diatas suhu kenyamanan orang yaitu sekitar 25 °C. Dengan suhu lingkungan yang tinggi, untuk mendapatkan suhu ruang yang nyaman perlu adanya alat yang bisa mengkondisikan suhu agar nyaman. Alat ini dikenal dengan pengkondisi udara (AC). 3.3.3.2 Jenis-jenis alat pendingin ruangan Berdasarkan lingkup daerah yang dicakupnya, AC dikelompokkan menjadi tiga jenis, yaitu AC jendela (Window AC), AC split, dan AC chiller. AC jendela merupakan tipe AC yang paling banyak digunakan karena kemudahan peng-gunaannya dan sangat ekonomis untuk 278 Peralatan Listrik Rumah Tangga pendinginan ruangan kecil. AC split banyak digunakan di komplek-komplek apartemen di mana kita bisa melihat pemandangan banyaknya unit konden-sor di atas atap-atap bangunan atau tertutup dalam suatu area yang khusus untuk alat-alat tersebut. AC chiller banyak digunakan di pusat-pusat perbelanjaan, hotel dan lain sebagainya yang mempunyai area yang lebih luas. 3.3.3.3 Prinsip kerja Prinsip kerja AC menggunakan prinsip proses refrigerasi seperti yang digunakan pada mesin-mesin pendingin, refrigerator (kulkas) dan mesin pembeku (freezer) namun pada alat pendingin ruangan tidak mempunyai bagian ruangan yang diisolasi. Alat ini menggunakan refrigerant seperti freon untuk memberikan pendinginannya. Proses pendinginannya dapat dijelaskan secara singkat seperti berikut ini (dapat dilihat pada bagian refrigerator (kulkas) dan freezer. Gambar 3.95 Diagram pengkondisi udara (AC) 1. Kompresor mengisap gas freon dingin dan membuatnya bertekanan tinggi dan menjadi panas. 2. Gas panas ini kemudian dialirkan ke kondensor (kumparan pipa). Pada kondensor ini gas panas refrigerant mendisipasikan/melepaskan panasnya, sehingga gas ini menjadi dingin dan mencair. Namun tekanannya masih tinggi. 3. Cairan freon yang bertekanan tinggi ini kemudian dialirkan melalui katup ekpansi (dari kapiler ke pipa berdiameter besar). Setelah melalui katup ekspansi, tekanan cairan menurun secara drastis. Penurunan tekanan ini membuat cairan menguap menjadi gas dan suhunya rendah sekali (dingin). 4. Gas dingin ini kemudian dialirkan pada kumparan evaporator. Pada pipa evaporator, gas menyerap panas dari lingkungannya sehingga mendinginkan suhu dalam suatu ruang atau bangunan. Demikian proses ini berjalan secara berulang-ulang membentuk siklus yang disebut siklus refrigerasi. 3.3.3.4 AC Jendela AC jendela merupakan unit ac yang mengimplementasikan suatu pengkondisi udara pada ruangan yang kecil. Unit AC ini dibuat dengan ukuran kecil sesuai dengan ukuran jendela sehingga mudah dipasang. Setelah dipasang, AC disambungkan ke stop kontak dan di On kan, maka ruangan akan segera dingin/sejuk. Karena demikian mudahnya, baik dalam hal pemasangan maupun operasinya membuat unit AC ini sangat banyak digunakan. Peralatan Listrik Rumah Tangga 279 Gambar 3.96 AC Jendela Gambar 3.97 AC jendela tampak dalam Bila penutup unit AC ini dibuka, akan terlihat komponen-komponen sebagai berikut: 1. Sebuah kompresor 2. Katup ekspansi 3. Kumparan pipa panas atau kondensor pada bagian luar ruangan 4. Kumparan pipa dingin atau evaporator pada bagian dalam ruangan 5. Dua buah kipas angin (fan) dan 6. Unit kontrol Kipas-kipas angin ini menghembuskan udara ke kondensor (kumparan pipa panas) untuk melepaskan panas gas refrigerant dan menghembus udara ke evaporator (kumparan pipa dingin) untuk mendinginkan ruangan. Kapasitas AC Kapasitas AC biasanya dinyatakan dalam BTU (British thermal unit). BTU merupakan jumlah panas yang dibutuhkan untuk meningkatkan suhu dari 1 pound (0,45 kg) air satu derajat Fahrenheit (0,56 °C). Dengan kata lain 1 BTU sama dengan 1.055 joule. Dalam terminologi pemanasan dan pendinginan 1 “ton” sama dengan 12.000 BTU. Sebagai contoh perhitungan kasar, rumah dengan ukuran 185.8 m2 (2000 feet (kaki) kuadrat) memerlukan sebuah pengkondisi udara dengan kapasitas 5 ton atau 60.000 BTU, yang berarti bahwa diperlukan 30 BTU per kaki kuadrat. Rating efisiensi energi Rating efisiensi energi (Energy Efficiency Rating=EER) dari suatu pengkondisi udara adalah rating BTU terhadap watasenya. Sebagai contoh, suatu AC 10.000 BTU mengkonsumsi daya 1.200 W, berarti EERnya adalah 8,3. Semakin tinggi EER akan semakin hemat mesinnya. 3.3.3.5 AC split AC split memisahkan sisi panas dan sisi dingin sistem. Sisi yang dingin terdiri atas katup ekspansi dan kumparan 280 Peralatan Listrik Rumah Tangga evaporator yang pada umumnya ditempatkan dalam suatu Air Handler Unit (AHU). AHU menghembuskan udara melalui kumparan evaporator dan udara, setelah melalui kumparan evaporator menjadi dingin. Udara dingin ini kemudian disalurkan ke ruangan dalam gedung yang didinginkan (Gambar 3.98). Sedangkan sisi panas yang biasa disebut dengan unit kondensasi atau kondenser biasanya diletakkan di luar bangunan. Unit kondensor ini seperti terlihat pada Gambar 3.99. Gambar 3.98 Prinsip unit AC-Split Gambar 3.99 Unit kondensasi Unit ini terdiri dari kumparan spiral yang panjang yang berbentuk silinder. Di dalam kumparan ini ada sebuah kipas angin yang menyemburkan udara, dilewatkan melalui kumparan untuk melepaskan kalor dalam kisi-kisi pipa kumparan tersebut. Akibatnya suhu udara keluar dari unit ini lebih panas dari suhu lingkungan sekitar. Kondensor jenis ini banyak dipakai karena di samping murah, juga tidak menimbulkan kebisingan di dalam ruangan. Namun, eksesnya adalah kebisingannya di luar bangungan menjadi meningkat. Jadi, pada prinsip-nya tidak ada perbedaan antara AC jendela dan AC split, kecuali ukuran AC split lebih besar, seperti kumparan kondenser, evaporator dan kompresor karena AC split untuk keperluan yang lebih besar dibandingkan AC jendela. Pada bangunan-bangunan seperti mal, supermarket, dan lain-lain, unit konden-sasi ini biasanya diletakkan di atas atap bangunan dan bisa menjadikan peman-dangan yang tidak menarik. Ada lagi yang berukuran kecil dipasang pada atap berdekatan dengan AHU kecil untuk keperluan ruangan khusus. Memang benar AC split pemakaiannya untuk beban yang lebih besar diban-dingkan AC jendela, namun untuk semakin besar bangunan, dimana daerah yang harus didinginkan cukup jauh dari AHU, unit ini mengalami kesulitan. Kesulitannya terletak pada pipa saluran udara dingin antara kondenser dan AHU yang melampaui batas maksimumnya (permasalahan lubrikasi kompresor), atau permsalahan pada ductingnya (kapasitas dan panjang). Jika, hal ini terjadi, maka sistem yang cocok adalah yang menggunakan sistem air yang didinginkan (chilled water sistem). Peralatan Listrik Rumah Tangga 281 3.3.3.6 AC Chiller Dalam sistem AC chiller, semua bagian dari pengkondisi udara terletak di atas atap atau di belakang bangunan. Alat ini mendinginkan air pada suhu antara 4 – 7 C. Air yang telah didinginkan ini kemudian dialirkan ke bagian-bagian bangunan yang membutuhkan pendinginan melalui AHU. Tidak ada batasan terhadap panjang pipa air dingin bila dapat diisolasi dengan baik. Berikut ini adalah diagram dari suatu AC chiller. Gambar 3.100 Prinsip AC-chiller Dari gambar tersebut bisa dilihat dengan jelas bahwa unit pengkondisi udara adalah sama seperti unit biasa. Pemindah kalor memungkinkan freon yang dingin mendinginkan air yang dipompakan ke seluruh bangunan yang perlu pendinginan. 3.3.3.7 Menara pendingin (cooling tower) Pada sistem yang telah dijelaskan sebelumnya, udara digunakan untuk mendisipasikan panas dari kumparan kondenser di luar. Pada sistem yang besar, efisiensi dapat ditingkatkan dengan menggunakan menara air (cooling tower). Menara air ini membangkitkan semprotan air dingin. Air ini mengalir melalui penukar kalor (heat exchanger) dan mendinginkan kumparan pipa panas pada unit pengkondisi udara. Ini memerlukan biaya investasi awal yang lebih tinggi, namun kalau ditinjau dari penghematan energinya, sistem ini akan jauh lebih murah. Banyak bentuk dan model dari menara air ini, namun mereka bekerja dengan prinsip yang sama, yaitu: 1. Menara air menghembuskan udara menggunakan semprotan air sehingga menyebabkan sebagian air menguap. 2. Biasanya, air ini menyembur melalui suatu lembaran tebal dari plastic mesh yang terbuka. 3. Udara menghembus melalui mesh ini tegak lurus terhadap aliran air. 4. Penguapan ini akan mendinginkan aliran air. 5. Karena sebagian dari air hilang menguap, menara air ini, maka perlu penambahan air secara tetap untuk mengkompensasi kehilangan air tersebut. Kapasitas pendinginan yang diperoleh dari menara air tergantung pada kelembapan relatif dari udara dan tekanannya. Misalnya, suhunya 35°C, tekanan barometriknya adalah 29,92 inci dari permukaan air laut dan kelembapannya adalah 80 %, suhu air di dalam menara air akan turun 6 derajat dan menjadi 89°F (atau turun 3,36 °C dan menjadi 31,7 °C). Next >