< Previous Teknik Kelistrikan dan Elektronika Instrumentasi 70 Pada gambar 2.9 di atas dilukiskan rangkaian tertutup yang terdiri atas dua loop. Arah arus dan arah penelusuran tiap loop. Misalkan Anda bagi menjadi seperti berikut. o Loop I ABGFA E = ( I × R) E1 – E2 = I(r1 +R1 +r2 + R2 + R3) + I2 x R4 o Loop II FEDGF E = ( I × R) E3 = I3 ( R6 + r3 + R5) + I x R4 o Penerapan Hukum I Kirchhoff I2 = I1 + I3 3. Teorema Rangkaian Untuk menyelesaikan persoalan yang muncul pada Rangkaian Listrik dapat digunakan suatu teorema tertentu. Dengan pengertian bahwa suatu persoalan Rangkaian Listrik bukan tidak dapat dipecahkan dengan hukum-hukum dasar atau konsep dasar ataupun dengan bantuan suatu analisis tertentu, tetapi pada pembahasan ini, dibahas bahwa penggunaan teorema tertentu dalam menyelesaikan persoalan yang muncul pada Rangkaian Listrik dapat dilakukan dengan menggunakan suatu teorema tertentu. Bahwa nantinya pada implementasi penggunaan teorema tertentu akan diperlukan suatu bantuan konsep dasar ataupun analisis rangkaian. Ada beberapa teorema yang dibahas pada bab ini , yaitu : 1. Teorema Superposisi 2. Teorema Substitusi 3. Teorema Thevenin 4. Teorema Norton 5. Teorema Millman 6. Teorema Transfer Daya Maksimum Teknik Kelistrikan dan Elektronika Instrumentasi 71 A. Teorema Superposisi ( Kesebandingan Lurus ) Teori superposisi ini hanya berlaku untuk rangkaian yang bersifat linier. Rangkaian linier adalah suatu rangkaian dimana persamaan yang muncul akan memenuhi jika y = kx, dimana k = konstanta dan x = variabel. Pada setiap rangkaian linier dengan beberapa buah sumber tegangan/ sumber arus dapat dihitung dengan cara : “Menjumlah aljabarkan tegangan/ arus yang disebabkan tiap sumber yang bekerja sendiri-sendiri”. Pengertian dari teori diatas bahwa jika terdapat n buah sumber maka dengan teori superposisi sama dengan n buah keadaan rangkaian yang dianalisis, dimana nantinya n buah keadaan tersebut akan dijumlahkan. Ini berarti bahwa bila terpasang dua atau lebih sumber tegangan/sumber arus, maka setiap kali hanya satu sumber yang terpasang secara bergantian. Sumber tegangan dihilangkan dengan cara menghubung singkatkan ujung-ujungnya (short circuit), sedangkan sumber arus dihilangkan dengan cara membuka hubungannya (open circuit). Rangkaian berikut ini dapat dianalisis dengan mengkondisikan sumber tegangan aktif/bekerja sehingga sumber arusnya menjadi tidak aktif (diganti dengan rangkaian open circuit = OC). Oleh sebab itu arus i dalam kondisi sumber arus OC yang mengalir di R10Ω dapat ditentukan. Gambar 2.10 Contoh Rangkaian Superposisi Teknik Kelistrikan dan Elektronika Instrumentasi 72 Kemudian dengan mengkondisikan sumber arus aktif/bekerja maka sumber tegangan tidak aktif (diganti dengan rangkaian short circuit). Disini arus i dalam kondisi sumber tegangan SC yang mengalir di R10 Ω dapat ditentukan juga. Akhirnya dengan penjumlahan aljabar kedua kondisi tersebut maka arus total akan diperoleh. Gambar 2.11 Rangkaian dengan sumber di hubung singkat B. Teorema Substitusi Pada teorema ini berlaku bahwa : “Suatu komponen atau elemen pasif yang dilalui oleh sebuah arus yang mengalir (sebesar i) maka pada komponen pasif tersebut dapat digantikan dengan sumber tegangan Vs yang mempunyai nilai yang sama saat arus tersebut melalui komponen pasif tersebut”. Jika pada komponen pasifnya adalah sebuah resistor sebesar R, maka sumber tegangan penggantinya bernilai Vs = i.R dengan tahanan dalam dari sumber tegangan tersebut sama dengan nol. Gambar 2.12 Illustrasi rangkaian teori substitusi Teknik Kelistrikan dan Elektronika Instrumentasi 73 Rangkaian berikut dapat dianalisis dengan teori substitusi untuk menentukan arus yang mengalir pada resistor 2 Ω. Gambar 2.13 Contoh rangkaian teori substitusi Harus diingat bahwa elemen pasif yang dilalui oleh sebuah arus yang mengalir (sebesar i) maka pada elemen pasif tersebut dapat digantikan dengan sumber tegangan Vs yang mempunyai nilai yang sama saat arus tersebut melaluinya. Kemudian untuk mendapatkan hasil akhirnya analisis dapat dilakukan dengan analisis mesh atau arus loop. Gambar 2.14 Illustrasi rangkai teori substitusi C. Teorema Thevenin Pada teorema ini berlaku bahwa : “Suatu rangkaian listrik dapat disederhanakan dengan hanya terdiri dari satu buah sumber tegangan yang dihubungserikan dengan sebuah tahanan ekivelennya pada dua terminal yang diamati”. Teknik Kelistrikan dan Elektronika Instrumentasi 74 Tujuan sebenarnya dari teorema ini adalah untuk menyederhanakan analisis rangkaian, yaitu membuat rangkaian pengganti yang berupa sumber tegangan yang dihubungkan seri dengan suatu resistansi ekivalennya. Gambar 2.14 Rangkaian Ekivalen Thevenin Pada gambar diatas, dengan terorema substitusi kita dapat melihat rangkaian sirkit B dapat diganti dengan sumber tegangan yang bernilai sama saat arus melewati sirkit B pada dua terminal yang kita amati yaitu terminal a-b. Setelah kita dapatkan rangkaian substitusinya, maka dengan menggunakan teorema superposisi didapatkan bahwa : 1. Ketika sumber tegangan V aktif/bekerja maka rangkaian pada sirkit linier A tidak aktif (semua sumber bebasnya mati diganti tahanan dalamnya), sehingga didapatkan nilai resistansi ekivelnnya. 2. Ketika sirkit linier A aktif/bekerja maka pada sumber tegangan bebas diganti dengan tahanan dalamnya yaitu nol atau rangkaian short circuit. Teknik Kelistrikan dan Elektronika Instrumentasi 75 Dengan menggabungkan kedua keadaan tadi (teorema superposisi) maka didapatkan : i = i1 + isc i = - + isc Pada saat terminal a-b di open circuit (OC), maka i yang mengalir samadengan nol (i = 0), sehingga : Dari persamaan di atas didapatkan : Teknik Kelistrikan dan Elektronika Instrumentasi 76 Cara memperoleh resistansi penggantinya (Rth) adalah dengan mematikan atau menon aktifkan semua sumber bebas pada rangkaian linier A (untuk sumber tegangan tahanan dalamnya = 0 atau rangkaian short circuit dan untuk sumber arus tahanan dalamnya = ∞ atau rangkaian open circuit). Jika pada rangkaian tersebut terdapat sumber dependent atau sumber tak bebasnya, maka untuk memperoleh resistansi penggantinya, terlebih dahulu kita mencari arus hubung singkat (isc), sehingga nilai resistansi penggantinya (Rth) didapatkan dari nilai tegangan pada kedua terminal tersebut yang di-open circuit dibagi dengan arus pada kedua terminal tersebut yang di- short circuit . Langkah-langkah penyelesaian dengan teorema Thevenin : 1. Cari dan tentukan titik terminal a-b dimana parameter yang ditanyakan. 2. Lepaskan komponen pada titik a-b tersebut, open circuit kan pada terminal a-b kemudian hitung nilai tegangan dititik a-b tersebut (Vab = Vth). 3. Jika semua sumbernya adalah sumber bebas, maka tentukan nilai tahanan diukur pada titik a-b tersebut saat semua sumber di non aktifkan dengan cara diganti dengan tahanan dalamnya (untuk sumber tegangan bebas diganti rangkaian short circuit dan untuk sumber arus bebas diganti dengan rangkaian open circuit) (Rab = Rth). 4. Jika terdapat sumber tak bebas, maka untuk mencari nilai tahanan pengganti Theveninnya didapatkan dengan cara Rth = 5. Untuk mencari Isc pada terminal titik a-b tersebut dihubungsingkatkan dan dicari arus yang mengalir pada titik tersebut (Iab = Isc). 6. Gambarkan kembali rangkaian pengganti Theveninnya, kemudian pasangkan kembali komponen yang tadi dilepas dan hitung parameter yang ditanyakan. Teknik Kelistrikan dan Elektronika Instrumentasi 77 Contoh : Tentukan nilai arus i dengan teorama Thevenin ! Jawaban : Tentukan titik a-b pada R dimana parameter i yang ditanyakan, hitung tegangan dititik a-b pada saat terbuka : Vab = Vac = -5 + 4.6 = -5 + 24 = 19 V Mencari Rth ketika semua sumber bebasnya tidak aktif (diganti dengan tahanan dalamnya) dilihat dari titik a-b : Rth = 4 Ω Teknik Kelistrikan dan Elektronika Instrumentasi 78 Rangkaian pengganti Thevenin : Sehingga : i = A D. Teorema Norton Pada teorema ini berlaku bahwa : “Suatu rangkaian listrik dapat disederhanakan dengan hanya terdiri dari satu buah sumber arus yang dihubungparalelkan dengan sebuah tahanan ekivelennya pada dua terminal yang diamati”. Tujuan untuk menyederhanakan analisis rangkaian, yaitu dengan membuat rangkaian pengganti yang berupa sumber arus yang diparalel dengan suatu tahanan ekivalennya. i = - + isc Teknik Kelistrikan dan Elektronika Instrumentasi 79 Langkah-langkah penyelesaian dengan teorema Norton : 1. Cari dan tentukan titik terminal a-b dimana parameter yang ditanyakan. 2. Lepaskan komponen pada titik a-b tersebut, short circuit kan pada terminal a-b kemudian hitung nilai arus dititik a-b tersebut (Iab = Isc = IN). 3. Jika semua sumbernya adalah sumber bebas, maka tentukan nilai tahanan diukur pada titik a-b tersebut saat semua sumber di non aktifkan dengan cara diganti dengan tahanan dalamnya (untuk sumber tegangan bebas diganti rangkaian short circuit dan untuk sumber arus bebas diganti dengan rangkaian open circuit) (Rab = RN = Rth). 4. Jika terdapat sumber tak bebas, maka untuk mencari nilai tahanan pengganti Nortonnya didapatkan dengan cara : RN = 5. Untuk mencari Voc pada terminal titik a-b tersebut dibuka dan dicari tegangan pada titik tersebut (Vab = Voc). 6. Gambarkan kembali rangkaian pengganti Nortonnya, kemudian pasangkan kembali komponen yang tadi dilepas dan hitung parameter yang ditanyakan. E. Teorema Millman Teorema ini seringkali disebut juga sebagai teorema transformasi sumber, baik dari sumber tegangan yang dihubungserikan dengan resistansi ke sumber arus yang dihubungparalelkan dengan resistansi yang sama atau sebaliknya. Teorema ini berguna untuk menyederhanakan rangkaian dengan multi sumber tegangan atau multi sumber arus menjadi satu sumber pengganti. Next >