< PreviousMATEMATIKA43 Pembelajaran remedial diberikan segera setelah siswa diketahui belum mencapai KBM/KKM berdasarkan hasil Penilaian Harian (PH), Penilaian Tengah Semester (PTS), atau Penilaian Akhir Semester (PAS). Pembelajaran remedial pada dasarnya difokuskan pada KD yang belum tuntas dan dapat diberikan berulang-ulang sampai mencapai KBM/KKM dengan waktu hingga batas akhir semester. Apabila hingga akhir semester pembelajaran remedial belum bisa membantu siswa mencapai KBM/KKM, pembelajaran remedial bagi siswa tersebut dapat dihentikan. Nilai KD yang dimasukkan ke dalam pengolahan penilaian akhir semester adalah penilaian setinggi-tingginya sama dengan KBM/KKM yang ditetapkan oleh sekolah untuk mata pelajaran tersebut. Apabila belum/tidak mencapai KBM/KKM, nilai yang dimasukkan adalah nilai tertinggi yang dicapai setelah mengikuti pembelajaran remedial. Guru tidak dianjurkan untuk memaksakan untuk memberi nilai tuntas kepada siswa yang belum mencapai KBM/KKM. Selanjutnya pembelajaran pengayaan dapat dilakukan melalui: 1. Belajar kelompok, yaitu sekelompok siswa diberi tugas pengayaan untuk dikerjakan bersama pada dan/atau di luar jam pelajaran.2. Belajar mandiri, yaitu siswa diberi tugas pengayaan untuk dikerjakan sendiri/individual.3. Pembelajaran berbasis tema, yaitu memadukan beberapa konten pada tema tertentu sehingga siswa dapat mempelajari hubungan antara berbagai disiplin ilmu. Pengayaan biasanya diberikan segera setelah siswa diketahui telah mencapai KBM/KKM berdasarkan hasil PH. Mereka yang telah mencapai KBM/KKM berdasarkan hasil PTS dan PAS umumnya tidak diberi pengayaan. Pembelajaran pengayaan biasanya hanya diberikan sekali, tidak berulang-kali sebagaimana pembelajaran remedial. Pembelajaran pengayaan umumnya tidak diakhiri dengan penilaian. 44Buku Guru Kelas IX SMP/MTsContoh Penilaian Autentik:1. Penilaian Kompetensi Pengetahuan Untuk menilai kompetensi pengetahuan yang dimiliki siswa, maka setiap akhir sub bab atau bab buku ini, guru sebaiknya menguji kemampuan siswa dengan memberikan tes atau non tes atau penugasan berupa soal-soal yang tersedia pada uji kompetensi yang tersedia pada setiap bab buku ini. Untuk penentuan skor yang diperoleh siswa, guru harus mengembangkan pedoman penskoran atau rubrik penilaian. Sebagai contoh teknik tes untuk dipedomani guru, disajikan sebagai berikut.Contoh Penilaian Tes TulisSatuan Pendidikan : SMPMata Pelajaran : MatematikaKelas : IXKompetensi dasar : 4.5 Menyelesaikan permasalahan nyata hasil pengamatan yang terkait penerapan kekongruenan dan kesebangunanIndikator : Siswa dapat menggunakan konsep kesebangunan segitiga untuk menentukan panjang sisi yang belum diketahui Materi : Kekongruenan dan kesebangunanSoal 1. Perhatikan gambar. Segitiga ABC adalah segitiga siku-siku sama kaki. Jika AB = 10 cm dan CD garis bagi sudut C, Tentukan panjang BD.2. Pada gambar di samping ini, tinggi tongkat PQ sesungguhnya adalah 4 m dan panjang bayangannya 15 m. Jika panjang bayangan pohon adalah 30 m, tentukan tinggi pohon.DBCooEA30 m15 mOQPSR4 mMATEMATIKA45Contoh Rubrik Penilaian Tes TulisNo.Kunci JawabanSkor1.Diketahui: Segitiga ABC adalah segitiga siku-DBCooEAsiku sama kaki. Jika AB = 10 cm dan CD garis bagi sudut C.1Ditanya: panjang BD.1∆ABC siku-siku samakaki (m∠ABC = 90o) dan AB = 10 cm, maka BC = AB = 10 cm, dan AC = 210+ 102 = 102cm, m∠BCA = m∠BAC = 45o, dan AC = 102cm.11Berdasarkan kriteria sudut – sudut – sisi, ∆CBD ≅ ∆CED karena DC = DC (berhimpit), m∠BCD = m∠ECD (diketahui), dan m∠DBC = m∠DEC = 90o (diketahui). Akibatnya, BD = ED dan CE = BC = 10 cm.11111Perhatikan ∆DAEm∠DAE = m∠BAC = 45o (berhimpit), m∠DEA = 90o (karena pelurusnya ∠CED = 90o)maka m∠ADE = 45o ∆DAE adalah segitiga siku-siku samakakiSehingga, ED = AE = AC – CE = 102 – 10 = 10(2 – 1) cm11111Jadi BD = ED = 10(2 – 1) cm.12.Diketahui:PQ = 4 mOQ = 15 mOR = 30 m1Ditanya: tinggi pohon (SR)130 m15 mOQPSR4 m46Buku Guru Kelas IX SMP/MTsNo.Kunci JawabanSkor∆PQO ∼ ∆SRO karena m∠POQ = m∠SOR (berhimpit) dan m∠PQO = m∠SRO (siku-siku)perbandingan sisi-sisi yang bersesuaian:PQOQSROR=41530SR=430815SR×==111211Jadi, tinggi pohon kira-kira adalah 12 m.1Skor maksimal25Nilai = Skor Perolehan100Skor Maksimal×Contoh Penilaian Tugas ProdukSatuan Pendidikan : SMPMata Pelajaran : MatematikaKelas : IXKompetensi dasar : 4.5 Menyelesaikan permasalahan nyata hasil pengamatan yang terkait penerapan kekongruenan dan kesebangunanIndikator : Siswa dapat membuat alat memperbesar gambar yang menggunakan konsep kesebangunan dua segitiga (pantograf)Materi : Kekongruenan dan kesebangunanSoalBersama temanmu, buatlah pantograf buatan kelompokmu yang bisa menghasilkan salinan gambar k kali lebih besar (boleh k = 2, 3, 4, 5 atau lebih). Dokumentasikan prosesnya. Gunakan pantograf tersebut untuk membuat salinan gambar yang diperbesar. Presentasikan pantograf hasil karya kelompokmu tersebut. MATEMATIKA47Contoh gambar pantografKriteriaSkor• Produk (hasil kerja) sesuai dengan konsep dan prinsip matematika;• Kerja kreatif;• Produk (hasil kerja) asli;• Diselesaikan tepat waktu;• Kerapian sangat baik.4• Produk (hasil kerja) sesuai dengan konsep dan prinsip matematika;• Kerja kurang kreatif;• Produk (hasil kerja) asli;• Diselesaikan tidak tepat waktu;• Kerapian cukup baik.3• Produk (hasil kerja) sesuai dengan konsep dan prinsip matematika;• Kerja tidak kreatif;• Produk (hasil kerja) asli;• Diselesaikan tidak tepat waktu;• Kerapian kurang baik.2• Produk (hasil kerja) sesuai dengan konsep dan prinsip matematika;• Kerja tidak kreatif;• Produk (hasil kerja) tidak asli buatan sendiri• Diselesaikan tidak tepat waktu;• Kerapian tidak baik;1Tidak melakukan tugas produk0Skor maksimal = 5 × 4 = 2048Buku Guru Kelas IX SMP/MTsRekapitulasi Skor Perolehan Tugas ProdukNo.KriteriaKelompok1234561.Kesesuaian dengan konsep dan prinsip matematika2.Kreativitas3.Keaslian produk4.Ketepatan waktu5.KerapianSkor PerolehanNilai = Skor Perolehan100Skor Maksimal×2. Penilaian kompetensi keterampilan Untuk mengetahui kompetensi keterampilan siswa, guru melakukan 3 teknik penilaian, yaitu: (1) tes unjuk kerja, (2) penilaian projek, (3) penilaian portofolio. Setiap akhir bab buku inim guru harus melaksanakan salah satu dari tiga jenis penilaian tersebut untuk mengukur keterampilan matematik siswa. Di bagian ini diberi contoh penilaian unjuk kerja dan penilaian projek beserta rubrik penilaiannya yang dapat dipedomani guru.Contoh Penilaian Unjuk KerjaSatuan Pendidikan : SMPMata Pelajaran : MatematikaKelas : IXKompetensi dasar : 4.5 Menyelesaikan permasalahan nyata hasil pengamatan yang terkait penerapan kekongruenan dan kesebangunanIndikator : Siswa dapat membagi suatu sudut menjadi dua sama besar dengan menggunakan konsep kekongruenan atau kesebangunan Materi : Kekongruenan dan kesebangunanMATEMATIKA49SoalGambarlah sebuah sudut dan beri nama ∠ABC, kemudiana. Dengan menggunakan jangka, bagilah ∠ABC tersebut menjadi dua sama besar. b. Gambarlah lagi ∠ABC yang sama, kemudian tanpa menggunakan jangka maupun busur derajat, bagilah ∠ABC tersebut menjadi dua sama besar. (petunjuk: gunakan konsep segitiga kongruen)Contoh Rubrik Penilaian Unjuk KerjaKriteriaSkorJawaban menunjukkan pengetahuan matematika mendasar yang berhubungan dengan tugas ini dengan baik.Ciri-ciri:• Semua prosedur atau langkah dilakukan dengan benar dan jawaban/hasil yang benar.• Kerapian baik.4Jawaban menunjukkan pengetahuan matematika mendasar yang berhubungan dengan tugas ini dengan cukup baik.Ciri-ciri:• Semua prosedur atau langkah dilakukan dengan benar. tetapi ada cara yang tidak sesuai atau ada satu jawaban/hasil yang belum tepat. • Kerapian cukup baik.3Jawaban menunjukkan keterbatasan atau kurangnya pengetahuan matematika yang berhubungan dengan tugas ini.Ciri-ciri:• Sebagian besar prosedur atau langkah dilakukan dengan benar tetapi jawaban/hasil belum selesai.• Kerapian kurang baik.250Buku Guru Kelas IX SMP/MTsKriteriaSkorJawaban menunjukkan sedikit atau sama sekali tidak ada pengetahuan matematika yang berhubungan dengan tugas ini.Ciri-ciri:• Prosedur atau langkah dilakukan dengan kurang tepat dan jawaban/hasil belum selesai. 1Contoh penyelesaian:Gambarlah sebuah sudut dan beri nama ∠ABC, kemudiana. Dengan menggunakan jangka, bagilah ∠ABC tersebut menjadi dua sama besar. Penyelesaian: Gunakan teknik membagi sudut menjadi dua bagian dengan jangka seperti langkah di bawah ini: (perhatikan gambar)1. Buat busur lingkaran dengan pusat titik B, sehingga memotong kaki sudut AB di titik D dan memotong kaki sudut BC di titik E.2. Buat lagi 2 buah busur lingkaran masing-masing dengan pusat di titik D dan E. Perpotongan kedua busur lingkaran tersebut beri nama titik G. 3. Tarik garis dari titik B ke G, sehingga m∠ABG = ∠CBG.BDABCEb. Gambarlah lagi ∠ABC yang sama, kemudian tanpa menggunakan jangka maupun busur derajat, bagilah ∠ABC tersebut menjadi dua sama besar. (petunjuk: gunakan konsep segitiga kongruen) Penyelesaian: 1. Gambarlah garis AD yang sejajar dengan BC.2. Gambarlah garis CD yang sejajar dengan BA. Sehingga terbentuk bangun jajargenjang ABCD.MATEMATIKA513. Tarik garis dari titik B ke D (diagonal jajargenjang ABCD). Jelas bahwa ∆ABD ≅ ∆CBD dengan m∠ABD = ∠CBD.ABCDPerolehan Skor Penilaian Unjuk KerjaKriteriaSkor PerolehanBobotNilai01234Pendekatan pemecahan masalah• Prosedur dan sistematika pemecahan masalah• Bentuk penyelesaian masalahXX41616Ketepatan • Ketepatan penggunaan konsep• Kebenaran hasil yang diperolehXX41616Gambar• Ketepatan gambar sebagai interpretasi masalah• Kesesuaian gambar dalam pemecahan masalah• Kerapian dan penyajianXXX2888Penjelasan• Kejelasan uraian jawaban• Pemahaman terhadap aspek hubunganXX1,566Nilai yang diperoleh10052Buku Guru Kelas IX SMP/MTsMisalkan Ahmad memperoleh skor seperti pada kolom skor perolehan KriteriaSkor PerolehanBobotNilai01234Pendekatan pemecahan masalah• Prosedur dan sistematika pemecahan masalah• Bentuk penyelesaian masalahXX41212Ketepatan • Ketepatan penggunaan konsep• Kebenaran hasil yang diperolehXX41616Gambar• Ketepatan gambar sebagai interpretasi masalah• Kesesuaian gambar dalam pemecahan masalah• Kerapian dan penyajianXXX2886Penjelasan• Kejelasan uraian jawaban• Pemahaman terhadap aspek hubunganXX1,533Nilai yang diperoleh84Jadi nilai akhir Ahmad adalah 84Next >