< Previous TEKNOLOGI LAS KAPAL 449 5. Uji struktur Uji struktur mempelajari struktur material logam. Untuk keperluan pengujian, material logam dipotong-potong, kemudian potongan-potongan diletakkan di bawah dan dikikis dengan material alat penggores yang sesuai. Uji struktur ini dilaksanakan secara makroskopik atau mikroskopik. Dalam uji makroskopik, permukaan spesimen diperiksa dengan mata telanjang atau melalui loupe untuk mengetahui status penetrasi, jangkauan yang terkena panas, dan kerusakannya. Dalam pemeriksaan mikroskopik, permukaan spesimen diperiksa melalui mikroskop metalurgi untuk mengetahui jenis struktur dan rasio komponen-komponennya, untuk menentukan sifat-sifat materialnya. Untuk baja, zat nital (asam nitrat 1-5cc plus alkohol 100cc) atau pikral (asam pikrat 4g plus alkohol 100cc) digunakan sebagai zat penggores (lihat Tabel V.5). Tabel V.5 Contoh material alat penggores Besi, baja, besi tuang Nital (Alkohol nitrat) Asam nitrat ................ 1-5 cc Alkohol ...................... 100 cc Pikral (Alkohol pikrat) Asam pikrat .................... 4 g Alkohol ...................... 100 cc Aluminium, aluminium campuran Larutan encer hidrogen florida Hidrogen florida ......... 0,5 cc Air .............................. 9,5 cc Larutan encer sodium hidroksidaSodium hidroksida .......... 1 g Air ............................... 90 cc Tembaga, tembaga campuran Larutan amonium sulfat Amonium persulfat ....... 10 g Air ............................... 90 cc 0.17%C x 100 0.32%C x 100 0.40%C x 100 1.53%C x 100 450 V.3 PENGUJIAN DENGAN CARA TAK MERUSAK / NDT Uji Non-Destruktif secara kasar dapat dibagi menjadi dua jenis sesuai dengan tempat terjadinya kerusakan, yaitu pengujian kerusakan pada bagian permukaan (uji kerusakan luar) dan pengujian kerusakan pada bagian dalam (uji kerusakan dalam). V.3.1 Uji Kerusakan Permukaan 1. Uji visual (VT) Uji visual merupakan salah satu metode pemeriksaan terpenting yang paling banyak digunakan. Uji visual tidak memerlukan peralatan tertentu dan oleh karenanya relatif murah selain juga cepat dan mudah dilaksanakan. Sasaran pengujian yang dilaksanakan meliputi : (a) Sebelum dan selama dilakukannya pengelasan adalah jenis dan bentuk material, bentuk sambungan, dan pemanasan sebelum pengelasan, pemanasan setelah pengelasan serta temperatur antar-lapisan. (b) Setelah pengelasan adalah ketepatan ukuran hasil pengelasan, selain itu juga penguatan, panjang kaki, tampilan rigi-rigi, penembusan, perlakuan terhadap lubang-lubang dan kerusakan pada bagian luar, misalnya retakan pada permukaan dan potongan-bawah, dari logam las. 2. Uji Partikel Magnet (MT) Pengujian terhadap partikel magnet merupakan metode yang benar-benar efisien dan mudah dilaksanakan untuk mendeteksi secara visual kerusakan-kerusakan halus yang tidak teridentifikasi pada atau di dekat permukaan logam. Pengujian ini banyak dilakukan di dalam dunia industri, walaupun tidak dapat digunakan untuk material non-magnetik seperti logam anti-karat austenitik dan aluminium. Prinsip kerja uji partikel magnet adalah sebagai berikut. Arus listrik dapat mengalir ke dalam, atau elektromagnet dapat digunakan pada, bagian tertentu dari spesimen, untuk menghasilkan fluksi magnetik yang akan mengalir di dalam spesimen. Jika terjadi kerusakan pada lapisan permukaan, maka fluksi tersebut sebagian akan mengarah ke sekitar daerah kerusakan sedangkan sebagian lagi akan tiris ke udara. Busa yang tiris ke udara itu akan membentuk dua kutub magnet, yaitu kutub utara (N) dan kutub selatan (S), pada kedua sisi daerah kerusakan, seperti tampak pada Gb. IV.9 (A). Karena kedua kutub magnet tersebut memiliki daya tarik lebih besar daripada permukaan material di TEKNOLOGI LAS KAPAL 451 sekelilingnya, maka partikel-partikel magnet akan ditarik oleh dan mengikuti kedua kutub tersebut sambil juga tarik-menarik satu sama lain. TEKNOLOGI LAS KAPAL 452 Sebagai hasilnya, pola magnetik partikel-partikel yang lebih luas daripada daerah kerusakan itu akan terbentuk pada bagian permukaan, di sekitar daerah kerusakan, seperti tampak pada Gb. IV.9 (B). Agar formasi pola partikel magnet yang benar mampu menunjukkan indikasi kerusakan, maka orientasi-orientasi kerusakan dan medan magnet harus diperhitungkan. Ada dua metode magnetisasi pada daerah pengelasan, yaitu "metode yoke", menggunakan elektromagnet seperti tampak pada Gb. IV.3.10, dan "metode prod", menggunakan elektrode pada spesimen agar arus listrik dapat mengalir di dalam spesimen. Metode prod tidak dapat diterapkan pada baja yang berkekuatan tarik tinggi, karena dapat menimbulkan hubungan arus pendek antara spesimen dengan elektrode sehingga menimbulkan kerusakan menyerupai pukulan pada busur las. Metode ini efektif untuk mendeteksi kerusakan yang tidak terpapar tetapi ada di dekat permukaan. Ada dua jenis partikel, yaitu partikel floresen dan partikel non-floresen. Adalah penting menentukan pilihan jenis partikel magnet yang tepat, karena keberhasilan deteksi kerusakan bergantung pada jenis partikel magnet yang digunakan selain juga metode magnetisasi. Partikel magnet bisa dipasok dengan metode kering atau metode basah. Dalam metode kering, partikel-partikel magnet kering ditebarkan di udara. Sedangkan dalam metode basah, partikel-partikel magnet ditebarkan di dalam air atau minyak tanah, dan dilakukan suspensi terhadap permukaan spesimen. Luas pola penyebaran partikel magnetLebar kerusakan(B)(A)(A) Gambar V.9 Prinsip kerja pengujian partikel magnet TEKNOLOGI LAS KAPAL 453 ElektromagnetAruslistrikGaris fluksi magnet (a) Metode Yoke (b) Metode ProdSpesimenKerusakanDaerah pengelasanDaerah pengelasanAruslistrikKerusakanSpesimen Gambar V.10 Metode pengujian partikel magnet pada daerah pengelasan 3. Uji Zat Penetran (PT) Untuk menguji zat penetran, digunakan cairan berdaya penetrasi tinggi terhadap spesimen. Cairan tersebut menembus celah-celah kecil atau daerah-daerah kerusakan serupa yang terbuka terhadap permukaan spesimen, karena adanya daya kapiler. Daerah yang terkena zat penetran itu kemudian diproses untuk mengungkapkan kerusakan secara visual. Berbeda dengan uji partikel magnet, uji zat penetran dapat digunakan untuk hampir semua material, dan pengujian ini akan efektif jika spesimennya memiliki kerusakan pada rongga yang dapat dimasuki oleh zat penetran. Pada umumnya, uji zat penetran ini dilakukan secara manual, sehingga dapat tidaknya kerusakan itu berhasil dideteksi sangat bergantung pada ketrampilan penguji. Jika dilaksanakan oleh seorang penguji yang kurang berpengalaman, maka keberhasilan uji zat penetran ini bisa bervariasi. Biasanya pengujian ini menggunakan bahan celup kering sebagai zat penetran, walaupun zat penetran floresen bisa digunakan sebagai gantinya. Zat penetran floresen mengandung unsur floresen, yang memancarkan cahaya floresen berwarna hijau muda apabila disinari dengan sinar ultaviolet. Tabel V.6 menentukan urutan proses uji zat penetran. TEKNOLOGI LAS KAPAL Tabel V.6 Urutan proses uji zat penetran Proses Uraian Kerusakan terbuka terhadap permukaan spesimen Celah kecil, lubang kecil dsb, pada permukaan spesimen (1) Sebelum pelaksanaan Bersihkan permukaan spesimen dengan larutan menghilangkan seluruh minyak, lemak dsb. (2) Penetrasi Gunakan zat penetran pada permukaan spesimen dengan semprotan dsb. Agar zat tersebut dapat menembus kerusakan. (3) Pembersihan Setelah menembus seluruhnya, hilangkan zat penetran pada permukaan spesimen dengan cairan. (4) Pencucian Gunakan bahan pencuci pada permukaan spesimen. Kemudian zat penetran akan muncul ke permukaan, membentuk pola cahaya berwarna merah atau hijau limau yang menunjukkan adanya kerusakan. (5) Pengeringan Keringkan permukaan spesimen dengan alat pengering. (6) Pengamatan Amati daerah uji dengan cahaya putih atau cahaya hitam kemudian catat hasilnya. (7) Setelah pelaksanaan Hilangkan bahan pencuci dengan air atau abu gosok. TEKNOLOGI LAS KAPAL 455 4. Uji elektromagnet Seperti tampak pada Gb. V.11, apabila koil yang dialiri arus listrik AC didekatkan ke spesimen non-magnetik, maka akan dihasilkan medan magnet, termasuk putaran arus listrik di dalam spesimen. Putaran arus listrik itu menghasilkan medan magnet baru yang arahnya berlawanan dengan arah medan magnet yang pertama. Sebagai akibatnya, tegangan listrik AC baru terinduksi ke dalam koil. Pada saat ini, jika terdapat kerusakan pada spesimen itu di dekat permukaan, maka putaran arus listrik itu akan berubah besaran dan arahnya, yang menyebabkan induksi tegangan listrik pada koil akan berubah. Pengujian terhadap putaran arus listrik akan menentukan lokasi kerusakan dengan mendeteksi perubahan pada induksi tegangan listrik tersebut. Metode pengujian ini dapat diterapkan pada material konduktif non-magnetik, misalnya baja anti-karat austenitik. Spesimen (materialnon-magnetik)Catu daya ACArus berputarKoil pembangkitArus pembangkit Gambar V.11 Pengujian elektromagnet V.3.2. Pengujian Kerusakan Dalam 1. Uji Ultrasonik (UT) Gelombang ultrasonik bergerak lurus melalui suatu unsur dan direfleksikan dari bawah unsur itu atau pada permukaan pembatas suatu materi asing didalam unsur itu. TEKNOLOGI LAS KAPAL Uji ultrasonik memanfaatkan sifat gelombang ultrasonik untuk mendeteksi kerusakan las di bagian dalam. Frekuensi gelombang ultrasonik yang digunakan untuk mendeteksi kerusakan pada logam secara umum adalah antara 0,5 sampai 10 MHz. Untuk mendeteksi kerusakan pada logam ini, frekuensi yang biasa digunakan adalah antara 2 sampai 5 Mhz. Untuk membangkitkan dan menerima, digunakan sebuah oskilator berupa sebuah irisan tipis material piezoelektrik. Kwarsa, keramik titanium barium, porselin zirkon titanium timah, dsb. merupakan material pengantar induksi yang umum dipakai untuk keperluan tersebut. Prosedur kerjanya adalah sebagai berikut. Sebuah satelit diarahkan ke permukaan spesimen, agar gelombang ultrasonik yang dibangkitkan oleh oskilator di dalam satelit itu dapat bergerak di dalam spesimen. Jika terdapat kerusakan atau bagian bawah spesimen berada dimuka gelombang ultrasonik, maka gelombang tersebut akan dipantulkan kesana, dipancarkan kembali ke satelit dan diterima oleh satelit. Jarak dan intensitas gelombang yang dipancarkan itu dapat diukur berdasarkan CRT, untuk menentukan lokasi dan ukuran kerusakan. Metode uji ultrasonik dapat diklasifikasikan menjadi metode sinar normal dan metode sinar sudut sesuai dengan arah penyebaran gelombang ultrasonik pada permukaan spesimen. Dalam metode sinar normal, gelombang ultrasonik disebarkan dengan arah vertikal ke permukaan spesimen yang dikenai pancaran gelombang satelit, seperti tampak pada Gb. V.12. Dalam metode sinar sudut, gelombang ultrasonik disebarkan pada suatu sudut ke permukaan spesimen yang dikenai pancaran gelombang satelit, seperti tampak pada Gb. V.13. Apabila gelombang yang dibangkitkan oleh oskilator menimpa permukaan spesimen, maka akan dipantulkan komponen gelombang longitudinal, kemudian komponen gelombang melintang akan ditransmisikan sendirian ke dalam spesimen. Uji ultrasonik pada daerah las ini biasanya dilaksanakan dengan menggunakan metode sinar sudut ini, karena gelombang ultrasonik tidak terganggu oleh rigi-rigi las. Peralatan uji ultrasonik lebih sederhana untuk dioperasikan daripada peralatan uji radiografi. Uji ultrasonik bahkan dapat digunakan untuk plat tebal. Uji ultrasonik sangat efektif dalam mendeteksi kerusakan las tetapi tidak efektif pada kerusakan las bulat seperti pada lubang cacing. Dengan metode pengujian ini, secara maya dimungkinkan untuk mengidentifikasi jenis kerusakan. TEKNOLOGI LAS KAPAL 457 B: Gema dari bagian bawahBagian bawah (a) Pantulan denyut ultrasonik pada kerusakan (b) Contoh deteksi kerusakan berdasarkan CRTSatelitvertikal Pengantar induksiPermukaanspesimen Sinar ultrasonikSpesimenKerusakanF: Gema dari kerusakan Gambar V.12 Kerangka kerja uji ultrasonic (metode sinar normal) (a) Penyebaran gelombang ultrasonik(b) Contoh deteksi kerusakan pada CRTSatelit miringPengantarInduksiTitik timbul pancaranPermukaan spesimenTitik biasSpesimenKerusakanT: Getaran transmisiF: Gema darikerusakan 2. Uji Radiografi (RT) Sinar radiasi, misalnya sinar X dan sinar gamma, ditransmisikan suatu unsur. Daya transmisinya bergantung pada jenis, kepadatan dan ketebalan unsur tersebut. Uji radiografi menggunakan sifat sinar tersebut dan fungsi fotografis radiasi untuk mendeteksi benda asing dan perubahan ketebalan materialnya, sehingga dapat mengidentifikasi kerusakan pada bagian dalam. Gambar V.13 Kerangka kerja uji ultrasonic (metode sinar sudut) TEKNOLOGI LAS KAPAL 458 Gb. V.14 menunjukkan prinsip kerja uji radiografi. Dengan metode pengujian ini, kerusakan tiga dimensi pada suatu spesimen, misalnya lubang cacing dan pemasukan terak, dapat divisualisasikan seperti rongga-rongga kecil. Spesimen tersebut pada satu sisi terkena sinar radiasi, yaitu selembar film sinar X yang digunakan pada bagian belakang spesimen. Jumlah radiasi yang dipancarkan dan sampai ke titik A dan B pada sisi lain spesimen yang berasal dari sumber radiasi pasti berbeda, karena daerah yang mengalami kerusakan memancarkan radiasi lebih banyak daripada daerah lainnya. Meningkatnya radiasi yang terpancar menyebabkan meningkatnya kepadatan pada film itu, yang divisualisasikan seperti sebuah bercak hitam ketika film itu dicuci. Karena daerah yang terkena masukan sinar tungsten pada daerah las TIG memancarkan radiasi lebih sedikit daripada daerah lainnya, maka daerah tersebut divisualisasikan seperti pola bercak putih film itu. Uji radiografi dapat diklasifikasikan sesuai dengan metode pendeteksian radiasi yang digunakan, yaitu radiografi langsung, radiografi tidak langsung, dan fluroskopi seperti tampak pada Gb. V.15 Metode radiografi yang paling umum digunakan untuk sambungan las adalah radiografi langsung, yaitu gambar difoto radiografi secara langsung ke lembaran film sinar X. Dalam uji radiografi, karena setiap kerusakan difoto radiografi untuk divisualisasikan, maka jenis kerusakan dapat diidentifikasi dengan relatif mudah. Namun demikian, karena film sinar X harus diletakkan pada spesimen di bagian belakang daerah pengelasan, maka film itu sulit digunakan pada jenis-jenis sambungan las tertentu. Film sinar X untuk industri yang tersedia secara komersial dapat digunakan untuk uji radiografi. Metode pemrosesan film setelah dilakukan radiografi hampir sama dengan proses fotografi biasa. Sinar X memiliki daya pancar yang tinggi. Oleh karena itu, untuk meningkatkan kepekaan film, digunakanlah secara ketat kertas floresen yang sensitif atau kertas foil logam yang sensitif pada film selama proses radiografi. Sumber-sumber radiasi sangat berbahaya dan membahayakan apabila tidak ditangani sebagaimana mestinya. Oleh karena itu, ketika melakukan uji radiografi, setiap peralatan harus dijaga agar menerima paparan radiasi seminimal mungkin bukan hanya oleh mereka yang menangani sumber radiasi melainkan juga oleh siapa saja yang berada di dekat tempat uji radiografi. Gb. V.14 menunjukkan contoh susunan uji radiografi. Next >