< PreviousTeknik Konstruksi kapal 88 Gambar 8.22b. Lengkung luas garis dalam keadaan even keel alas rata. Gambar 8.22c. Lengkung luas garis kapal dengan alas miring. Gambar 8.22a, menunjukkan bentuk lengkung Aw untuk kapal dalam keadaan even keel dan menjumpai kenaikan alas (Rise of Floor) sehingga pada garis air 0, luas bidang garis air tersebut adalah nol. Gambar 8.22b, menunjukkan bentuk lengkung Aw untuk kapal dalam keadaan even keel dan dengan alas rata (flat bottom) sehingga pada garis air 0, lengkung luas garis air mempunyai harga yaitu luas bidang alas rata tersebut. Gambar 8.22c, adalah bentuk lengkung Aw untuk kapal dengan alas miring, sehingga pada garis air 0, lengkung lunas garis air mempunyai besaran. Sedang titik awal dari lengkung garis air dimana luas garis air adalah nol mulai dari A, titik terdalam dari kapal. Perhitungan luas garis air dapat dilakukan dengan aturan Simpson atau Trapesium. Untuk ini dapat kita gunakan bentuk tabel seperti tabel 8.1( Hal 86 ) Teknik Konstruksi kapal 892. Lengkung Volume Karene (V), Lengkung Displacement Di Air Tawar (D1) Dan Lengkung Displacement Di Air Laut (D). Lengkungan-lengkungan ini menunjukkan volume bagian kapal yang masuk dalam air tanpa kulit dalam m3. Displacement kapal dengan kulit didalam air tawar (massa jenis = 1,000) dalam ton dan displacement kapal dengan kulit didalam air laut (massa jenis = 1,025) dalam ton, untuk tiap-tiap sarat kapal. Gambar 8 23. Lengkung volume karene. Gambar 8.23, menunjukkan gambar lengkung-lengkung hidrostatik untuk lengkung V, D1, D, pada sumbu tegak dapat dibaca sarat kapal dalam meter atau nomer garis air (WL). Sedang pada sumbu mendatar dibawah menunjukkan panjang mendatar dalam centimeter dimana kalau panjang mendatar dalam centimeter akan diketahui, kemudian dikalikan skala dari lengkung, maka dapat diketahui berapa besar V (M3), D1 (ton) atau D (ton). Sering pada sumbu mendatar dibagian atas dari gambar lengkung hidrostatik sudah tertera berapa besarnya V (M3), D (ton) atau D (ton). Lengkungan yang diatas adalah volume dari bagian bawah kapal yang masuk kedalam air. Untuk kapal baja adalah volume kapal kulit yang dihitung dari gambar rencana garis. Sedang untuk kapal kayu adalah volume dari badan kapal sampai dengan kulit. Lengkungan yang ditengah adalah lengkungan displacement dalam air tawar (D1) dalam ton. Jadi kelengkungan D1 adalah hasil penjumlahan volume kapal tanpa kulit dengan volume kulit, dikalikan dengan massa jenis air tawar (1,000). D1 = (V + Volume kulit) x 1,000. Sedang lengkung D menunjukkan displacement (ton) dalam air laut (massa jenis air). D = D1 x 1,025. Teknik Konstruksi kapal 90Untuk perhitungan D1 dan D secara lebih teliti, sering disamping penambahan volume kulit juga ditambahkan tonjolan-tonjolan seperti kemudi, baling - baling, penyokong baling-baling, lunas bilga dan lain-lain. Untuk sarat kapal yang sama displacement kapal dalam air tawar adalah lebih kecil dari displacement kapal dalam air laut. Untuk displacement yang sama, kapal didalam air laut akan mempunyai sarat yang lebih kecil dari pada kapal berada didalam air tawar. Lengkungan-lengkungan ini dapat digunakan untuk menghitung V, D1, dan D kalau sarat kapat diketahui, atau sebaliknya untuk menghitung sarat kapal kalau salah satu dari V, D1 dan D diketahui. Gambar 8.24. Lengkung dalam keadaan alas miring Bentuk lengkungan seperti pada gambar 8.23 adalah untuk kapal dalam keadaan even keel dimana garis air (WL0), displacement (banyaknya air yang dipindahkan) berharga nol. Sedang volume Karene berharga nol terletak pada ketinggian pelat keel. Tetapi untuk kapal dalam keadaan alas miring maka lengkungannya akan berbentuk seperti gambar 8.24. Ditempat dimana pada garis air 0, volume Karene atau Displacement sudah mempunyai harga yaitu volume atau displacement dari bagian kapal yang berada dibawah garis air nol tersebut. Sedang titik awal lengkung displacement dimulai dari titik A, yaitu titik terdalam dari kapal, dan titik awal dari volume Karene dimulai dari atas titik A setinggi pelat keel. Untuk menghitung volume karene dapat kita hitung dengan dua cara : 1) Dengan menggunakan luas garis air. Teknik Konstruksi kapal 91 Gambar.8.25 Luas garis air Kalau lengkung luas garis air sampai sarat tertentu misalnya T seperti gambar 8.25. Kita hitung luasnya, maka hasil yang didapat adalah volume karene sampai sarat T tersebut. 2) Dengan menggunakan luas penampang lintang. Gambar 8.26. Bidang lengkung penampang lintang Lengkung penampang merupakan suatu lengkung dari luas tiap-tiap station (gading) pada garis air tertentu. Jadi kalau luas bidang lengkung penampang melintang seperti gambar 8.26, kita hitung, maka akan terdapat volume karene sampai garis air yang bersangkutan. 3. Lengkung Luas Permukaan Basah ( WSA ). Dari sebuah kapal yang terapung di air sampai suatu garis air dimana terdapat permukaan badan kapal yang tercelup. Luas dari permukaan badan kapal yang berhubungan langsung dengan air tersebut, disebut luas permukaan basah.( Wetted Surface Area ) Jadi lengkung luas permukaan basah menunjukkan permukaan badan kapal yang tercelup untuk tiap-tiap sarat kapal. Teknik Konstruksi kapal 92 Gambar 8.27 Lengkung luas permukaan basah. Gambar 8.27 menunjukkan bentuk lengkung luas permukaan basah (A) dari sebuah kapal dalam keadaan even keel dan dengan alas rata (flat bottom). Jadi pada garis air WLO, lengkung luas permukaan basah mempunyai harga sebesar luas bidang alas rata tersebut. Luas permukaan basah dipergunakan untuk menentukan jumlah kebutuhan cat untuk mengecat bagian bawah dari kapal. Juga bila luas permukaan basah ditambahkan dengan luas kulit kapal diatas sarat, akan kita dapatkan luas seluruh pelat kulit, sehingga perkiraan berat pelat kulit dapat dihitung setelah tebal dan berat jenis pelat diketahui. Untuk menghitung luas permukaan basah, kita dapat mengambil ukuran-ukuran permukaan yang dibasahi oleh air dari gambar rencana garis. Kita bentangkan setiap lengkungan station sampai garis air tertentu yang ada pada gambar body plan dari rencana garis. Untuk ini dapat digunakan lajur kertas atau lajur kayu yang mudah dibengkokkan. Bentangan tiap station dari center line sampai garis air yang diminta kita sebut half girth dari station tersebut. Half girth dari station-station itu kita gambarkan sebagai ordinat pada setiap nomor station yang sesuai sepanjang kapal. Bila luas bidang seperti pada gambar 8.28 kita hitung luasnya maka didapat luas permukaan basah. Teknik Konstruksi kapal 93 Gambar 8.28. Half girth station Gambar 8.29 Half girth station Tetapi untuk perhitungan yang lebih teliti, disamping bentangan half girth, kita juga harus membentangkan garis air, hal ini untuk memperkecil kesalahan terutama pada bagian ujung dari kapal. Ini terlihat pada gambar 8.29 dimana bentangan permukaan basah antara WL2 dan WL4 untuk bagian ujung kapal. Teknik Konstruksi kapal 94 Gambar 8.30. Bentang permukaan basah. Bentangan permukaan basah antara WL2 dan WL4 sebelum garis air no. 4 dibentangkan. Bentangan permukaan basah antara WL2 dan WL4 setelah garis air no. 3 dibentangkan. Gambar 8.31. Bentang garis air. Untuk mendapatkan hasil luas permukaan basah yang paling mendekati keadaan sebenarnya, kita bentangkan garis air yang ada diantara WL2 dan WL4. Jadi kita bentangkan garis air No. 3 pada sebuah garis lurus mulai dari midship (station 5) sehingga station 6, 7, 8, 9, 9 ½ bergeser menjadi station 6’, 7’, 8’, 9’, 91/2’ dan bentangan half girth antara WL2 dan WL4 kita ukurkan pada station yang telah digeser itu. 4. Lengkung Letak Titik Berat Garis Air Terhadap Penampang Tengah Kapal ( ɎF.). Lengkungan ini menunjukkan jarak titik berat garis air ɎF (centre of floation) terhadap penampang tengah kapal untuk tiap-tiap sarat kapal. Teknik Konstruksi kapal 95 Gambar 8.32a. Lengkung titik berat garis air dengan alas rata Gambar 8.32b. Lengkung titik berat air dengan kenaikan alas. Gambar 8.32a, menunjukkan lengkung F untuk kapal even keel. Bila kapal mempunyai kenaikan alas, maka F untuk sarat nol adalah jarak titik tengah keel ke penampang tengah kapal. Sedang untuk kapal dengan alas rata, F untuk sarat nol adalah jarak titik berat dari bidang alas rata itu ke penampang tengah kapal. Gambar 8.32 b, menunjukkan lengkung f untuk kapal dengan alas miring. Lengkungan ini tidak terhitung mulai pada garis dasar, tetapi mulai dari titik terendah dari kapal dan besarnya adalah jarak titik terendah kapal ke penampang tengah kapal Teknik Konstruksi kapal 965. Lengkung Letak Titik Tekan Terhadap Penampang Tengah Kapal (ɎB). Dengan berubahnya sarat kapal, bagian kapal yang masuk ke dalam air juga berubah. Hal ini akan mengakibatkan berubahnya titik tekan (centre of buoyancy) kapal. Lengkung B menunjukkan jarak titik tekan terhadap penampang tengah kapal untuk tiap-tiap sarat kapal. Gambar 8.33. Lengkung ɎB dan ɎF. Karena biasanya skala B, F dibuat sama, dan kedua lengkungan memberikan harga jarak ke penampang tengah kapal, maka kedua lengkungan ini mempunyai titik awal yang sama seperti terlihat pada gambar 8.33 Letak titik tekan terhadap penampang bidang lengkung penampang lintang seperti pada gambar 8.33 untuk garis air yang sesuai. Faktor momen untuk diambil nol. Volume = V = k.h ¦1 = …… m3 B = SY = h.¦ 2 + ¦3 = …… .m. 6. Lengkung Letak Titk Tekan Terhadap Keel ( KB ). Lengkung KB menunjukkan jarak titik tekan (centre of buoyancy) ke bagian bawah pelat keel untuk tiap-tiap sarat kapal. Teknik Konstruksi kapal 97 Gambar : 8.34. Lengkung KB. Gambar 8.34 menunjukkan bentuk lengkung KB untuk kapal dalam keadaan even keel. Skala lengkung KB ini biasanya diambil sama dengan skala sarat kapal. Letak titik tekan terhadap keel (KB) adalah sama dengan letak titik berat terhadap garis dasar dari bidang lengkung garis air seperti terlihat pada gambar 8.34 untuk garis air yang sesuai. Faktor momen adalah nol. V = k.h.¦1 = ……………………..m3 KB = SY = h ¦2 = ……………… m 7. Lengkung Letak Titik Tekan Sebenarnya (B) Lengkung letak titik tekan sebenarnya menunjukkan kedudukan titik tekan B terhadap penampang tengah kapal untuk tiap-tiap sarat kapal. Lengkungan ini merupakan gabungan dari lengkung letak titik tekan terhadap keel (KB) dan lengkung letak titik tekan terhadap penampang tengah kapal Ɏ(B). Next >