< PreviousTeknik Konstruksi kapal 28Vs = ( 1,00675 – 1,00750 )V. Untuk kapal kayu ( kapal yang di buat dari bahan kayu ) Vs = ( 1,00750 – 1,015 )V. D. Berat Pemindahan Air ( W ). Berat pemindahan air adalah berat air yang dipindahkan oleh badan secara keseluruhan yang ada di bawah garis air. Kalau massa jenis air dinyatakan dengan į, maka. W = Vs . į W = L . B . T . Cb . į . C Hukum Archimedes mengatakan bahwa setiap benda yang dimasukkan ke dalam air, benda tersebut mendapat gaya tekan ke atas seberat zat cair yang dipindahkan oleh benda tersebut jadi W = į . Vs Demikian pula halnya dengan sebuah kapal yang terapung di air akan mendapat gaya tekan ke atas sebesar berat air yang dipindahkan oleh badan kapal tersebut. W = L . B . T . Cb . į . C Dalam hal ini berat kapal ( W ) = berat kapal kosong ditambah dengan bobot mati ( dead weight ) atau dapat dituliskan. W = Dwt + Berat Kapal Kosong. Selanjutnya harus diingat bahwa gaya berat dari kapal bekerja dalam arah vertical kebawah, sedangkan displacement yang merupakan gaya tekan keatas bekerja dalam arah vertical ke atas. Notasi yang digunakan. Displacement ( ¨) = L . B . T . Cb . į . C Volume of Displacement ( ź) = L . B . T . Cb . C E. Bobot Mati ( Dead Weight ). Bobot mati adalah daya angkut dari sebuah kapal dimana di dalamnya termasuk berat muatan, berat bahan bakar, berat minyak lunas, berat air minum, berat bahan makanan, berat crew kapal dan penumpang serta barang yang dibawanya. Di dalam Dwt ( dead weight ) prosentase berat yang paling besar adalah berat muatan yaitu ± ( 70 ~ 85 ) %. Teknik Konstruksi kapal 29Berat bahan bakar adalah jumlah berat bahan bakar yang dipakai dalam pelayaran. Jumlahnya tergantung dari besarnya PK mesin, kecepatan kapal itu sendiri dan jarak pelayaran yang ditempuh. Kecepatan yang digunakan dalam hal ini adalah kecepatan dinas yaitu kecepatan rata – rata yang dipakai dalam dinas pelayaran sebuah kapal dan dinyatakan dalam knot, dimana 1 Knot = 1mil laut / jam. = 1852 m / jam. = 0,5144 m / detik. Kecepatan percobaan adalah kecepatan terbesar yang dapat dicapai kapal dalam pelayaran percobaannya. Berat minyak lumas berkisar ( 2 ~ 4 ) % dari berat bahan bakar yang dipakai. Pemakaian air tawar diperkirakan ( 100 ~ 150 ) Kg / orang per hari ( untuk minum dan keperluan sanitasi ). Bahan makanan antara 5 kg / orang / hari. Berat crew dan penumpang serta barang perlengkapan yang di bawanya diperkirakan ( 150 ~ 200 ) kg / orang. F. Berat Kapal Kosong. ( Light Weight ) Berat kapal kosong umumnya dibagi 3 bagian besar seperti berikut : 1. Berat baja badan kapal ( berat karpus ), yaitu berat badan kapal, bangunan atas ( superstructure ) dan perumahan geladak ( deck house ). 2. Berat peralatan, yaitu berat dari seluruh peralatan antara lain jangkar, rantai jangkar, mesin jangkar, tali temali, capstan, mesin kemudi, mesin winch, derrick boom, mast, ventilasi, alat – alat navigasi, life boat, davit, perlengkapan dan peralatan dalam kamar – kamar dan lain – lain. 3. Berat mesin penggerak beserta instalasi pembantunya, yaitu adalah berat motor induk, berat motor bantu, berat ketel, berat pompa – pompa, berat compressor, separator, berat botol angin, cooler, intermediate shaft, propeller, shaft propeller, bantalan – bantalan poros, reduction gear dan keseluruhan peralatan yang ada di kamar mesin. G. Volume Ruang Muat. Ruang muat di dalam kapal barang biasanya dibedakan dalam tiga bagian ruangan yaitu : ¾ Ruang muatan cair ( Liquid cargo tank ) Teknik Konstruksi kapal 30¾ Ruang muatan dingin ( Refrigerated cargo hold ) ¾ Ruang muatan kering ( Dry cargo hold ) Volume atau kapasitas ruang muatan kering pada umumnya dibedakan dalam 3 macam muatan yaitu : ¾ Gross cargo capacity, yaitu kapasitas ruang muat yang direncanakan jadi tidak termasuk pengurangan konstruksi gading – gading ( Frame ). ¾ Grain cargo capacity, yaitu kapasitas ruang muatan biji – bijian atau tanpa pembungkusan tertentu. ¾ Bale cargo capacity, yaitu kapasitas ruang muatan dalam pembungkusan tertentu misalnya dalam karung, kotak, derum dan lain – lain. Pada umumnya harga grain cargo capacity lebih besar dibandingkan dengan bale cargo capacity. Volume ruang muatan ( kapasitas ruang muatan ) sangat tergantung pada jenis barang / muatan yang diangkut. Dengan perkataan lain hal ini tergantung pada spesifikasi volume atau stowage factor jenis barang yang diangkut. Spesifikasi volume adalah besarnya ruangan dalam m³ atau ft ³ yang diperlukan untuk menyimpan suatu jenis barang tertentu seberat 1 metric ton atau 1 long ton. Kapal barang normal pada umumnya mempunyai harga spesifikasi volume antara 1,30 ~ 1,70 m³ / ton. Sekedar contoh berikut ini diberikan daftar stowage factor yaitu ruangan yang diperlukan untuk setiap ton muatan dengan pembungkus tertentu, dinyatakan dalam m³ / ton. Teknik Konstruksi kapal 31TABEL 5.1 Daftar Stowage Faktor Jenis barang Stowage factor Cara pembungkusannya Jenis barang Stowage factor Cara pembungkusanya Anggur 1,5 Kotak Kopi 1,7 - 2,5 Karung Apel 2,5 Kotak Kopia 2,1 - 1,5 Karung Beras 1,4 Karung Pupuk 0,8 Zak Barang-barang di dalam kaleng. 1,35 - 1,4 Kotak Semen 0,9 Zak Jagung 1,5 Karung Teh 2,8 - 3,3 Peti Gandum 1,4 Karung Tembakau 3,3 Bal Garam 1,1 – 1,6 Karung Tepung 1,4 Zak Gula 1,3 – 1,4 Karung Cat 1,0 Kaleng Jute 1,8 – 3,1 Bal Bier 1,66 Barrel Kapas 1,5 – 2,4 Bal Wool di pres 3,0 Bal Kapok 7,6 Bal - - - Kacang 1,6 Karung - - - Khusus untuk muatan biji-bijian ( Curah ) tambang dan biji tumbuhan mempunyai harga spesifik volume sebagai berikut : Jenis Muatan Biji Besi : 0,80 Biji Phosphat : 0,85 – 0,9 Biji Batubara : 1,20– 1,30 Biji Nekel : 0,80 Biji Gandum : 1,24 Biji Cokes : 2,45 Biji Mangaan : 0,60 Biji Barley : 1,44 Biji Belerang : 0,80 Biji Tembaga : 0,4 – 0,6 Biji Oats : 2,0 Teknik Konstruksi kapal 32H. TONASE ( TONNAGE ) Sebagai alat angkut yang dipergunakan dalam kegiatan ekonomi , maka kapal tersebut tentu dikenakan pajak serta memerlukan biaya sehubungan dengan kegiatan, Bahwa makin besar sebuah kapal, akan makn besar pula pajak serta ongkos yang harus dikeluarkannya. Sebagaimana diketahui, pertambahan besar kapal sangat bervariasi baik terhadap panjang, lebar maupun tingginya. Besarnya panjang kapal dan lebar kapal belum dapat dipakai sebagai pedoman untuk menunjukkan besarnya kapal. Sebab ukuran besarnya kapal adalah persoalan kapasitas muat ( Carrying capacity ). Oleh karena itu dalam menentukan pajak, berlaku suatu pedoman bahwa besarnya pajak yang dikenakan pada sebuah kapal haruslah sebanding dengan kemampuan kapal tersebut untuk menghasilkan ( Potensial earning capacity ). Atas dasar pemikiran ini, karena tonase kapal dianggap dapat menggambarkan potensial earning capacity sebuah kapal, maka besar pajak yang dikenakan pada suatu kapal dapat didasarkan atas besarnya tonasenya. Dalam perkembangan selanjutnya bukan saja pajak pelabuhan atas besarnya tonase melainkan ongkos pengedokan, penundaan serta beberapa persyaratan keselamatan pelayaran didasarkan pula atas besarnya tonnage. Dapat disimpulkan gunanya tonnage adalah : a. Untuk menunjukkan ukuran besarnya kapal yaitu kapasitas muatnya. b. Bagi pemerintah adalah untuk dasar pegangan dalam memungut pajak diantaranya adalah pajak pelabuhan sebagai imbalan atas pelayanan ( Service ) yang telah diterima kapal. c. Bagi pemilik kapal adalah untuk memperkirakan pendapatan maupun pengeluaran ( pajak dan ongkos ) yang harus dikeluarkan pada waktu tertentu. d. Tonase dipergunakan sebagai batasan terhadap berlakunya syarat – syarat keselamatan kapal ataupun beberapa syarat lain. e. Digalangan kapal, tonnage digunakan sebagai pedoman dalam menetapkan tarif docking dan reparasi kapal. Teknik Konstruksi kapal 33BAB VI RENCANA GARIS ( LINES PLAN ) Sebelum mulai menggambar rencana garis ( lines plan ) . Harus mengetahui lebih dahulu ukuran besar kecilnya kapal, seperti panjang, lebar meupun tinggi badan kapal. Ukuran kapal tersebut menggunakan singkatan – singkatan yang mempunyai arti tertentu walaupun dalam istilah bahasa inggris dan penggunaannya sudah standart. Apabila seseorang hendak membuat suatu kapal digalangan, maka pertama–tama yang harus dikerjakan adalah pemindahan gambar rencana garis dari kertas gambar kelantai (mould loft) dengan ukuran yang sebenarnya atau skala 1 : 1 karena dari gambar rencana garis inilah kita dapat membentuk kapal yang akan dibangun. Dalam gambar rencana garis ini ada beberapa istilah atau pengertian yang harus diketahui seperti yang diuraikan dibawah ini : A. Garis Air ( Water Line ). Di umpamakan suatu kapal dipotong secara memanjang ( mendatar ). Garis – garis potong yang mendatar ini disebut garis air ( water line ) dan mulai dari bawah diberi nama WL O, WL 1, WL 2, WL 3 dan seterusnya. Dengan adanya potongan mendatar ini terjadilah beberapa penampang. Tiap – tiap penampang ini disebut bidang garis air. B. Garis Dasar ( Base Line ). Garis dasar ( base line ) adalah garis air yang paling bawah. Dalam hal ini adalah garis air 0 atau WL 0. Atau kalau dilihat dari bidang garis air, maka proyeksi base line adalah bidang garis air 0. Garis air ini ( WL 0 ) / garis dasar ini letaknya harus selalu datar. Pada kapal – kapal yang direncanakan dalam keadaan datar ( even keel ). C. Garis Muat ( Load Water Line ). Garis muat adalah garis air yang paling atas pada waktu kapal dimuati penuh dengan muatan. Tinggi garis muat ( T ) diukur persis di tengah – tengah kapal ( Midship ). D. Garis Geladak Tepi ( Sheer Line ). Dalam gambar rencana garis, garis geladak tepi adalah garis lengkung dari tepi geladak yang di tarik melalui ujung atas dari balok geladak. Kalau kita melihat garis geladak tepi dari gambar diatas, maka terlihat bahwa jalannya garis sisi tersebut adalah menanjak naik dihaluan maupun di buritan. Teknik Konstruksi kapal 34 Cara Menentukan Garis Geladak Tepi ( Sheer Line ). Panjang pada dari AP sampai FP dibagi menjadi 6 bagian yang sama seperti pada gambar dibawah ini: AP16 L13 L13 L16 LFPOI Gambar 6.1 Cara menentukan sheer plan 1. Pembagian panjang kapal tersebut masing – masing : 1/6L dari AP, 1/3 L dari AP, midship, 1/3 L dari FP dan 1/6 L dari FP. 2. Selanjutnya pada midship ukurkan tinggi kapal ( H ). 3. Kemudian pada ketinggian H ditarik garis datar sejajar dengan garis dasar ( base line ), sedemikia rupa hingga memotong garis tegak yang ditarik melalui titik AP, 1/6 L dari AP, 1/3 L dari AP midship, 1/3 L dari FP, 1/6 L dari FP dan FP 4. Dari perpotongan antara garis datar yang ditarik sejajar dengan base line setinggi H pada midship tadi dengan garis tegak yang ditarik melalui titik-titik AP, diukurkan tinggi sheer standart sebagai berikut ( dalam mm ) : AP = 25 (L/3 + 10) 1/6 L dari AP = 11,1 (L/3 + 10) 1/3 L dari AP = 2,8 (L/3 + 10) Miship = 0 AP = 5,6 (L/3 + 10) 1/6 L dari AP = 22,2 (L/3 + 10) 1/3 L dari AP = 50 (L/3 + 10) 5. Kemudian dari titik-titik tersebut diatas dibentuk garis yang stream line, menanjak naik kedepan dan kebelakang. E. Garis Geladak Tengah ( Camber ) Cara menggambar camber pada potongan memanjang kapal adalah sebagai berikut : 1. Pertama – tama kita menggambar garis geladak tepi sesuai dengan petunjuk diatas. 2. Kemudian dari masing – masing titik pada garis geladak tepi sesuai dengan pembagian AP, 1/6 L dari AP, 1/3 L dari AP dan seterusnya kita ukurkan keatas harga – harga dari 1/50 B ( B = adalah lebar kapal setempat pada potongan AP, 1/6 L dari AP, 1/3 L dari AP dan seterusnya). Teknik Konstruksi kapal 353. Titik tersebut kita hubungkan satu sama lain sehingga terbentuk gambar garis geladak tengah seperti pada gambar. Gambar 6.2 Potongan kapal Tinggi 1/50 B dari garis geladak tepi diukur pada centre line dari kapal disebut camber. Lengkungan dari camber kesisi kiri kanan lambung kapal dan berhenti pada titik garis geladak tepi disebut garis lengkung geladak. Dalam menentukan camber pada potongan melntang dapat dilaksanakan dengan dua cara : APGaris Geladak TengahGaris Geladak Tepi150 BOIIO150 BB/2FP Gambar 6.3 Cara membuat camber Teknik Konstruksi kapal 36Cara 1 CLhB/2hLC1023456b6543215432112345123456c6543201LhCa Gambar 6.4 Cara membuat camber Gambar diatas adalah salah satu potongan melintang kapal pada salah satu gading : 1. Dari geladak tepi setinggi H (tinggi kapal ) ditarik garis tegak lurus centre line, dimana garis ini adalah setengah lebar kapal ( B/2 ). 2. Selanjutnya dari titik 0 ( nol ) yaitu perpotongan antara garis centre line dengan garis datar yang ditarik dari salah satu titik pada garis geladak tepi dari gading yang bersangkutan kita membuat setengah lingkaran dengan jari – jari h = 1/50 B ( B adalah lebar gading yang bersangkutan ). ( lihat gambar a ) 3. Pada bagian ¼ lingkaran ( busur lingkaran kita bagi menjadi 6 bagian yang sama, sehingga pada gambar kita mendapatkan titik – titik 1,2,3 sampai 6. 4. Selanjutnya setengah lingkaran yang berimpit dengan garis datar yang ditarik tegak lurus dengan centre line kita bagi menjadi 6 bagian yang sama juga, sehingga kita dapatkan titik – titik 1,2,3 sampai 6. 5. Kemudiankita hubungkan titik 1 pada busur lingkaran dengan titik 1 pada garis datar, titik 2 pada busur lingkaran dengan titik Teknik Konstruksi kapal 372 pada garis datar dan seterusnya. ( lihat gambar B ). Sehingga mendapatkan panjang X1, X2 dan seterusnya. 6. Pada panjang B/2 dbagi menjadi 6 bagian dan letakkan titik – titik 1,2,3 sampai 6. 7. Melalui titik – titik tersebut tarik garis – garis tegak lurus. 8. Ukurkan panjang garis X1 pada garis tegak lurus yang ditarik melalui titik 1, X2 pada garis tegak lurus yang ditarik melalui titik 2 dan seterusnya sehingga mendapatkan garis tegak yang mempunyai ketinggian yang berbeda. 9. Dari ketinggian garis tegak yang berbeda tersebut kita hubungkan dengan garis sehingga mendapatkan lengkungan garis tengah geladak. ( lihat gambar c ). Cara 2 Sebagaimana cara 1, maka pada cara 2 ini kita umpamakan juga sebagai salah satu penampang melintang kapal pada salah satu gading. 1. Dari geladak tepi setinggi H kita tarik garis tegak lurus terhadap centre line pada centre line kita ukurkan keatas garis setinggi 2h = 1/25 B ( B adalah lebar gading setempat ). ( lihat gambar a ). 2. Kemudian kita buat segitiga sama kaki. 3. Pada sisi – sisi segitiga kita bagi dan banyaknya pembagian minimum 5 bagian. Next >