< Previous PEREKAYASAAN SISTEM RADIO dan TELEVISI 128 LC Gambar 7.5. fr Q = kualitas rangkaian fr = frekuensi resonansi B = lebar band Lebar band tergantung dari kualitas rangkaian, semakin kecil kualitas rangkaian, Q semakin lebar bandnya. Kualitas rangkaian Q semakin besar dengan semakin besarnya tahanan paralel rangkaian dalam perbandingan dengan tahanan butanya. RpXo Rp = tahanan paralel rangkaian Xo = tahanan buta kumparan atau kapa-sitor Rv = tahanan rugi dari kumparan Pelalu band dengan rangkaian resonator LC Gambar 7.6. Resonator LC dan hasil laluan dengan berbagai macam Q Dengan kualitas Q yang kecil dicapai suatu lebar band yang lebar, tetapi daya pilah ( selektifitas ) tidak baik, karena bentuk kemiringan kurva yang PEREKAYASAAN SISTEM RADIO dan TELEVISI 129 LANDAI. Sehingga tidak jelas batas frekuensi yang mana yang dilakukan dan yang mana ditahan. Dengan kulaitas Q yang besar dicapai suatu daya pilah yang BAIK, tetapi lebar bandnya SEMPIT. Suatu kurva laluan pelalu banf yang diinginkan dengan daya pilah yang baik (curam) dan lebar yang besar. Pelalu Band dengan rangkaian resonator LC ( Filter Band/ Band Filter) Dua rangkaian resonator dapat dihubungkan secara induktif kapasitif G a) Penggandeng induktif G b) Penggandeng kepala kapasitif G c) Penggandeng kaki kapasitif Gambar 7.7. Macam-macam penggandeng (coupling) Rangkaian pengganti suatu penyaring band GL1L2K.L1K.L2 Gambar 7.8. Rangkaian pengganti penyaring PEREKAYASAAN SISTEM RADIO dan TELEVISI 130 Pada filter band dengan penggandeng induktif kedua kumparan digandeng longgar. Dalam gambar rangkaian pengganti gambar 7.8 sebagian kecil kumparan (K.L) digandeng kuat seperti transformator. Rangkaian kedua berfungsi sebagai rangkaian RESONATOR SERI. Dibawah frekuensi tengah filter band, rangkaian kedua bekerja sebagai KAPASITANSI yang tergantung frekuensi (rangkaian seri). Kapasitansi ini dipindahkan ke rangkaian pertama dan terletak PARALEL DENGAN C1. Frekuensi resonansi rangkaian pertama mengecil. Diatas frekuensi tengah rangkaian kedua bekerja sebagai INDUKTANSI yang tergantung frekuensi , induktansi ini dipindahkan ke rangkaian pertama, induktansi rangkaian pertama mengecil dan frekuensi resonansi NAIK. Pergeseran frekuensi resonansi yang sama melalui rangkaian pertama tampil pula pada rangkaian kedua. Gambar 7.9. Berbagai macam hasil laluan Semakin kuat kedua rangkaian tergandeng maka rangkaian akan semakin kritis (diatas kritis), kurva laluan semakin TINGGI dan LEBAR. Akhirnya bagian atas kurva laluan berbentuk pelana. Kurva laluan filter band tergantung pada besar gandengan dan kualitas rangkaian. Pada gandengan diatas kritis k.Q > 1 tertampil bentuk pelana Pada gandengan dibawah kritis k.Q < 1 tertampil bentuk seperti kurva resonansi. Pergeseran fasa antara tegangan masukan dan tegangan keluaran filter band saat resonansi sebesar 900, dibawah frekuensi resonansi lebih kecil dari 900 PEREKAYASAAN SISTEM RADIO dan TELEVISI 131 dan diatas frekuensi resonansi lebih besar dari 900. Filter band yang banyak digunakan dalam teknik radio dan televisi adalah yang tergandeng induktip. Filter kwarsa dan Keramik Selain filter dengan LC tredapat pula filter dengan menggunakan kwarsa (Quars) dan keramik. Gambar 7.10. Kristal kuarsa Dengan filter kwarsa dapat dicapai kualitas Q antara 20000 sapai 200.000. Nampak pada gambar diatas filter quart dengan frekwensi 10.000Hz atau 10 Khz, di pasaran tersedia filter quart dengan frekwensi dari orde Khz sampai dengan ratusan Mhz , namun ada pula filter jenis quart yang dibuat khusus untuk keperluan filter pada radio komunukasi, jenis filter ini dinamakan mechanical filter, dia mempunyai dimensi fisik lebih besar dan mampu melalukan frekwensi resonansi dengan band widh tertentu misalnya 2,5 Khz, nampak seperti pada gambar dibawah penggunaan mekanikal filter pada perangkat komunikasi SSB. PEREKAYASAAN SISTEM RADIO dan TELEVISI 132 Gambar 7.11. Filter pada perangkat SSB Sedang filter keramik dapat mencapai kualitas Q antara 70 sampai 3000, untuk memperbesar kualitas filter-filter keramik dapat dihubung seri. Selain kualitas Q yang besar, filter keramik tanpa MEDAN PENGENDALI MAGNETIS. Stabil terhadap PERUBAHAN SUHU dan lebih murah dibanding pada filter LC. PENALAAN tidak diperlukan pada filter-filter keramik. Filter-filter keramik bekerja berdasarkan atas EFEK PIEZO. Dengan memberikan tegangan bolak-balik pada filter keramik akan diperoleh GETARAN MEKANIS. Pada frekuensi tertentu akan tertampil suatu resonansi. penypenyaring k Gambar 7.12. Berbagai hasil penyaring PEREKAYASAAN SISTEM RADIO dan TELEVISI 133 C1CoR1 Gambar 7.13. Contoh rangkaian penyaring dan hasil kurvanya Gambar 7.13 diatas menunjukkan rangkaian pengganti suatu resonator keramik dan kurva laluannya. Kapasitansi Co terbentuk oleh elektroda-elektrodanya. C1 dan L1 membentuk resonator seri. Dengan C1 dan C0 terhubung seri maka kumparan L1 akan terhubung paralel, dan terbentuklah resonator paralel. a) Filter keramik dalam resonansi seri b) Rangkaian filter keramik dalam resonansi seri c) Filter keramik ganda dalam resonansi parallel Gambar 7.14. Macam-macam rangkaian penyaring keramik PEREKAYASAAN SISTEM RADIO dan TELEVISI 134 2. PENYARING FREKUENSI AUDIO Filter atau penyaring frekuensi audio adalah suatu sistem yang dapat memisahkan sinyal berdasarkan frekuensinya; ada frekuensi yang diterima, dalam hal ini dibiarkan lewat; dan ada pula frekuensi yang ditolak, dalam hal ini secara praktis dilemahkan. Magnitude (nilai besar) dari fungsi alih dinyatakan dengan |T|, dengan satuan dalam desibel (dB). Filter dapat diklasifikasikan menurut fungsi yang ditampilkan, dalam term jangkauan frekuensi, yaitu passband dan stopband. Dalam pass band ideal, magnitude-nya adalah 1 (= 0 dB), sementara pada stop band, magnitude-nya adalah nol (= - dB). Berdasarkan hal ini filter dapat dibagi menjadi 4. 1. Filter lolos bawah (low pass filter), pass band berawal dari ω = 2pf = 0 radian/detik sampai dengan ω = ω 0 radian/detik, dimana ω 0 adalah frekuensi cut-off. 2. Filter lolos atas (high pass filter), berkebalikan dengan filter lolos bawah, stop band berawal dari ω = 0 radian/detik sampai dengan ω = ω 0 radian/detik, dimana ω 0 adalah frekuensi cut-off. 3. Filter lolos pita (band pass filter), frekuensi dari ω 1 radian/detik sampai ω 2 radian/detik adalah dilewatkan, sementara frekuensi lain ditolak. 4. Filter stop band, berkebalikan dengan filter lolos pita, frekuensi dari ω 1 radian/detik sampai ω 2 radian/detik adalah ditolak, sementara frekuensi lain diteruskan. Berikut ini gambaran karakteristik filter ideal dalam grafik magnitude terhadap frekuensi (dalam radian/detik). PEREKAYASAAN SISTEM RADIO dan TELEVISI 135 Gambar 7.15. Karakteristik Filter Ideal Karakter filter riil tidaklah sama dengan karakter filter ideal. Dalam filter riil, frekuensi cut-off mempunyai magnitude -3 dB, bukan 0 dB. Pada filter riil juga terdapat apa yang disebut pita transisi (transititon band), yang kemiringannya dinyatakan dalam dB/oktav atau dB/dekade. PEREKAYASAAN SISTEM RADIO dan TELEVISI 136 Gambar 7.16. Karakteristik Filter riil Menurut pemakaian komponen aktif, filter dapat dibedakan menjadi filter pasif dan filter aktif. Filter Pasif Yaitu filter yang tidak menggunakan komponen aktif. Komponen filter hanya terdiri dari komponen-komponen pasif : tahanan (R), induktor (L) dan kapasitor (C), RC, LC atau RLC. Filter ini mempunyai beberapa kelemahan, antara lain : a. peka terhadap masalah kesesuaian impedansi. b. relatif berukuran besar dan berat, khususnya filter yang menggunakan induktor (L). c. non linieritas, khususnya untuk frekuensi rendah atau untuk arus yang cukup besar. Filter Aktif Yaitu filter yang menggunakan komponen aktif, biasanya transistor atau penguat operasi (op-amp). Kelebihan filter ini antara lain : a. untuk frekuensi kurang dari 100 kHz, penggunaan induktor (L) dapat dihindari PEREKAYASAAN SISTEM RADIO dan TELEVISI 137 b. relatif lebih murah untuk kualitas yang cukup baik, karena komponen pasif yang presisi harganya cukup mahal. Beberapa macam filter yang termasuk ke dalam filter aktif adalah : Filter Lolos Bawah (Low Pass Filter) Suatu filter lolos bawah orde satu dapat dibuat dari satu tahanan dan satu kapasitor seperti pada Gambar 7.17. Filter orde satu ini mempunyai pita transisi dengan kemiringan -20 dB/dekade atau –6 dB/oktav. Penguatan tegangan untuk frekuensi lebih rendah dari frekuensi cut off adalah : Av = - R2 / R1 sementara besarnya frekuensi cut off didapat dari : fC = 1 / (2πR2C1) Gambar 7.17. Filter Lolos Bawah Orde 1 Filter Lolos Atas (High Pass Filter) Suatu filter lolos bawah orde satu dapat dibuat dari satu tahanan dan satu kapasitor seperti pada Gambar 7.18. (perhatikan perbedaannya dengan Gambar 7.17. pada penempatan C1). Filter orde satu ini mempunyai pita transisi dengan kemiringan 20 dB/dekade atau 6 dB/oktav. Penguatan tegangan untuk frekuensi lebih tinggi dari frekuensi cut off adalah : Av = - R2 / R1 Next >