< Previous 139BAB IV Program Linier 2.Tentukan nilai maksimum dan minimum z = 4x + 5y dari daerah feasible berikut. 3.Suatu jenis roti membutuhkan 150 gram tepung dan 50 gram mentega, sedangkan jenis yang lain membutuhkan 75 gram tepung dan 75 gram mentega. Bahan yang tersedia adalah 9 kg tepung dan 6 kg mentega. Keuntungan yang diperoleh dari hasil penjualan roti jenis pertama dan kedua masing-masing Rp400,00 dan Rp500,00. Tentukan tiap-tiap jenis roti yang harus dibuat supaya didapat hasil keuntungan yang maksimum dan tentukan pula keuntungan maksimum tersebut.4.Sebuah toko sepeda menyediakan dua jenis sepeda, yaitu sepeda dengan stang dan tanpa stang yang masing-masing harganya Rp400.000,00 dan Rp500.000,00. Kapasitas toko tersebut tidak lebih dari 50 buah sepeda. Keuntungan dari setiap penjualan sepeda dengan stang dan tanpa stang masing-masing Rp60.000,00 dan Rp40.000,00. Modal yang dimiliki pemilik toko sebesar Rp23.000.000,00. Tentukanlah: a.banyaknya masing-masing jenis sepeda yang harus disediakan agar diperoleh keuntungan yang sebanyak-banyaknya. b.berapakah keuntungan maksimum tersebut. 5.Pengembang rumah sederhana menyediakan rumah tipe 21 dan tipe 36 dengan harga jual masing-masing Rp30.000.000,00 dan Rp45.000.000,00. Luas tanah yang diperlukan untuk membangun tipe 21 adalah 60 m2 dan tipe 36 adalah 72 m2.Sedangkan lahan yang tersedia 20.400 m2. Biaya untuk membangun rumah-rumah tersebut berasal dari kredit suatu bank swasta yang besarnya tidak lebih dari Rp12.000.000.000,00. Apabila diharapkan keuntungan sebesar Rp2.250.000,00 untuk tiap unit penjualan tipe 21 dan Rp3.000.000,00 untuk tipe 36, tentukanlah: a.banyaknya masing-masing rumah yang harus dibangun agar diperoleh keuntunga yang sebesar-besarnya. b.keuntungan maksimum tersebut. A. Soal Pilihan Ganda Pilihlah salah satu jawaban a, b, c, d, atau e yang dianggap benar. 1.Sebuah hotel mempunyai dua tipe kamar yang masing-masing berdaya tampung 3 orang dan 2 orang. Jika jumlah kamar seluruhnya 32 kamar dan daya tampung keseluruhan 84 orang, maka banyaknya kamar yang berdaya tampung 2 orang adalah . . . . a.6 c. 14 e. 20 b.12 d. 16 140Matematika X SMK Kelompok:Penjualan dan Akuntansi1526-40Xy2.Seorang pemborong pengecatan rumah mempunyai persediaan 80 kaleng cat warna putih dan 60 kaleng warna abu-abu. Pemborong tersebut mendapat tawaran untuk mengecat ruang tamu dan ruang tidur. Setelah dihitung ternyata 1 ruang tamu menghabiskan 2 kaleng cat putih dan 1 kaleng abu-abu. Sedangkan ruang tidur menghabiskan masing-masing 1 kaleng. Jika banyaknya ruang tamu dinyatakan dengan x dan ruang tidur dengan y, maka model matematika dari pernyataan di atas adalah . . . . a.2x + y ≤ 80 ; x + y ≤ 60 ; x ≥ 0 ; y ≥ 0 b.x + y ≤ 80 ; 2x + y ≥ 60 ; x ≥ 0 ; y ≥ 0 c.x + y ≤ 80 ; 2x + y ≤ 60 ; x ≥ 0 ; y ≥ 0 d.2x + y ≥ 80 ; x + y ≤ 60 ; x ≥ 0 ; y ≥ 0 e.2x + y ≤ 80 ; x + y ≥ 60 ; x ≥ 0 ; y ≥ 0 3. Daerah penyelesaian model matematika yang ditunjukkan oleh sistem pertidaksamaan: 5x + 2y ≤ 20; 7x + 10y ≤ 70 2x + 5y ≥ 20; x ≥ 0; y ≥ 0 adalah daerah yang ditunjukkan oleh . . . . a. I c. III e. V b. II d. IV 4. Nilai minimum fungsi objektif f(x, y) = 4x + 3y dari sistem pertidaksamaan 2x + y ≥ 11; x + 2y ≥ 10; x ≥ 0; y ≥ 0 adalah . . . . a.15 c. 25 e. 40 b.22 d. 33 5.Suatu pesawat mempunyai tempat duduk tidak lebih dari 48 penumpang. Setiap penumpang kelas utama boleh membawa bagasi 60 kg sedangkan kelas ekonomi 20 kg. Pesawat itu hanya dapat membawa bagasi 1.440 kg. Bila x dan y berturut-turut menyatakan banyaknya penumpang kelas utama dan ekonomi, maka model matematika dari persoalan di atas adalah . . . . a.x + y ≤ 48 ; 3x + y ≥ 72 ; x ≥ 0 ; y ≥ 0 b.x + y ≤ 48 ; x + 3y ≤ 72 ; x ≥ 0 ; y ≥ 0 c.x + y ≤ 48 ; 3x + y ≤ 72 ; x ≥ 0 ; y ≥ 0 d.x + y ≥ 48 ; x + 3y ≥ 72; x ≥ 0 ; y ≥ 0 e.x + y ≥ 48 ; x + 3y > 72 ; x ≥ 0 ; y ≥ 0 6.Daerah yang diarsir dari gambar di samping adalah himpunan penyelesaian dari sistem pertidaksamaan . . . . a. 5x + 3y ≤ 30; x – 2y ≥ 4 ; x ≥ 0 ; y ≥ 0 b. 5x + 3y≤ 30; x – 2y ≤ 4; x ≥ 0 ; y ≥ 0 c. 5x + 2y ≤ 30; 2x – y ≤ 4 ; x ≥ 0 ; y ≥ 0d. 2x + 5y ≤ 30; 2x – y ≤ 4; x ≥ 0 ; y ≥ 0 e. 5x + 3y ≤ 30; x – 2y ≤ 4 ; x ≥ 0 ; y ≥ 0 141BAB IV Program Linier 7.Daerah yang diarsir pada gambar di samping adalah himpunan penyelesaian suatu sistem pertidaksamaan. Nilai maksimum untuk 5x + 4y dari daerah penyelesaian tersebut adalah . . . . a.16 c. 20 e. 24 b.18 d. 22 8.Seorang penjual buah-buahan yang menggunakan gerobak mempunyai modal Rp1.000.000,00. Ia telah membeli jeruk dengan harga Rp4.000,00 per kg dan pisang Rp1.600,00 per kg. Banyaknya jeruk yang dibeli x kg dan pisang y kg. Sedangkan muatan gerobak tidak dapat melebihi 400 kg sehingga sistem pertidaksamaan yang memenuhi permasalahan di atas adalah . . . . a.5x + 4y ≤ 2.500 ; x + y ≤ 400 ; x ≥ 0 ; y ≥ 0 b.5x + 4y ≤ 1.250 ; x + y ≤ 400 ; x ≥ 0 ; y ≥ 0 c.5x + 2y ≤ 1.250 ; x + y ≤ 400 ; x ≥ 0 ; y ≥ 0 d.5x + 4y ≤ 1.200 ; x + y ≤ 400 ; x ≥ 0 ; y ≥ 0 e.5x + y ≤ 750 ; x + y ≤ 400 ; x ≥ 0 ; y ≥ 0 9. Daerah penyelesaian model matematika yang ditunjukkan sistem pertidaksamaan 3x + 2y ≥ 12; x + 2y ≤ 8; 0 ≤ x ≤ 8; y ≥ 0 adalah daerah yang ditunjukkan oleh . . . . a. I c. III e. V b. II d. IV 10.Pak Daud membeli es krim jenis I dengan harga per buah Rp500,00 dan jenis II Rp400,00. Lemari es yang dipunyai untuk menyimpan es tersebut tidak dapat memuat lebih dari 300 buah, sementara uang yang dimiliki Pak Daud adalah Rp140.000,00. Jika es krim tersebut dijual kembali dengan mengambil untung masing-masing jenis Rp100,00 per buah, maka banyaknya es krim jenis I dan II yang dijual Pak Daud jika terjual seluruhnya dan mendapat untung yang sebesar-besarnya, masing-masing adalah. . . . a.200 dan 100 c. 100 dan 200 e. 50 dan 250 b.150 dan 150 d. 75 dan 225 11.Tempat parkir seluas 360 m2 dapat menampung tidak lebih dari 30 kendaraan. Untuk parkir sebuah sedan diperlukan rata-rata 6 m2 dan sebuah bus 24 m2. Jika banyaknya sedan dinyatakan dalam x dan bus y, maka model matematika dari pernyataan di atas adalah . . . . a.x + y ≤ 30 ; x + 4y ≤ 60 ; x ≥ 0 ; y ≥ 0 b.x + y < 30 ; x + 4y < 60 ; x ≥ 0 ; y ≥ 0 c.x + y ≤ 30 ; 4x + y < 60 ; x ≥ 0 ; y ≥ 0 d.x + y < 30 ; 4x + y < 60 ; x ≥ 0 ; y ≥ 0 e.x + y ≤ 30 ; 4x + y ≤ 60 ; x ≥ 0 ; y ≥ 0 142Matematika X SMK Kelompok:Penjualan dan Akuntansi 12.Daerah yang diarsir pada gambar di samping merupakan penyelesaian sistem pertidaksamaan linier. Nilai maksimum fungsi objektif f(x,y) = x + 3y adalah . . . . a.8 c. 14 e. 22 b.10 d. 18 13.Daerah penyelesaian dari sistem pertidaksamaan 3x + 2y ≤ 36; x + 2y ≥ 20; x ≥ 0; y ≥ 0 Pada gambar di samping adalah . . . . a.I c. III e. V b.II d. IV 14.Dengan persediaan kain polos 20 m dan kain bergaris 10 m seorang penjahit akan membuat pakaian jadi. Model I memerlukan 1 m kain polos dan 1,5 m kain bergaris, model II memerlukan 2 m kain polos dan 0,5 kain bergaris. Jumlah total pakaian jadi akan maksimum, jika model I dan II masing-masing . . . . a.4 dan 8 c. 6 dan 4 e. 7 dan 5 b.5 dan 9 e. 8 dan 8 15.Nilai maksimum dari bentuk objektif f(x,y) = x + 3y pada himpunan penyelesaian pertidaksamaan 2x + y ≤ 8; x + 2y ≥ 7; x ≥ 0; y ≥ 0 adalah . . . . a.4 c. 16 e. 24 b.12 d. 18 16.Daerah yang diarsir adalah himpunan penyelesaian permasalahan program linier. Nilai maksimum dari z = 40x + 30y adalah . . . . a.15.000 b.16.000 c.18.000 d.20.000 e.24.000 17.Daerah yang memenuhi pertidaksamaan x + 2y ≤ 6; 3x + y ≥ 12; x ≥ 0; y ≥ 0 adalah . . . . a.I d. IV b.II e. V c.III 18.Seorang pemborong mempunyai persediaan cat warna cokelat 100 kaleng dan warna abu-abu 240 kaleng. Pemborong tersebut mendapat tawaran untuk mencat 12x643yIVIIIIIIV0 143BAB IV Program Linier ruang tamu dan ruang tidur suatu gedung. Setelah dikalkulasi ternyata 1 ruang tamu menghabiskan 1 kaleng cat warna cokelat dan 3 kaleng cat warna abu-abu. Sedangkan ruang tidur menghabiskan 2 kaleng cat warna cokelat dan 3 kaleng cat warna abu-abu. Jika biaya yang ditawarkan pemborong setiap ruang tamu Rp30.000,00 dan ruang tidur Rp25.000,00, maka biaya maksimum yang diterima pemborong adalah . . . . a.Rp1.250.000,00 c. Rp2.400.000,00 e. Rp3.100.000,00 b.Rp2.300.000,00 d. Rp3.000.000,00 19. Nilai minimum fungsi objektif Z = 3x + 4y yang memenuhi sistem pertidaksamaan: 2x + 3y ≥ 12; 5x + 2y ≥ 19; x ≥ 0; y ≥ 0 adalah . . . . a. 38 c. 18 e. 15 b. 32 d. 17 20. Daerah penyelesaian model matematika dari sistem Pertidaksamaan 2x + 3y ≥ 12; 5x + 2y ≥ 19 x ≥ 0; y ≥ 0 ditunjukkan oleh grafik disamping pada angka . . . . a.I c. III e. V b.II d. IV 21.Sebuah perusahaan bola lampu menggunakan 2 jenis mesin. Untuk membuat bola lampu jenis A memerlukan waktu 3 menit pada mesin I dan 5 menit pada mesin II. Bola lampu jenis B memerlukan waktu 2 menit pada mesin I dan 7 menit pada mesin II. Jika mesin I bekerja 1.820 menit dan mesin II bekerja 4.060 menit, maka model matematika dari permasalahan di atas adalah . . . . a. 3x + 5y ≤ 1.820, 2x + 7y ≤ 4.060, x ≥ 0, y ≥ 0 b. 3x + 7y ≤ 1.820, 2x + 2y ≤ 4.060, x ≥ 0, y ≥ 0 c. 3x + 5y ≤ 4.060, 2x + 7y ≤ 1.820, x ≥ 0, y ≥ 0 d. 3x + 2y ≤ 1.820, 5x + 7y ≤ 4.060, x ≥ 0, y ≥ 0 e. 3x + 7y ≤ 4.060, 2x + 5y ≤ 1.820, x ≥ 0, y ≥ 0 22.Daerah yang diarsir adalah daerah himpunan penyelesaian permasalahan program linier. Nilai minimum dari fungsi z = 2x + 5y adalah . . . . a.6 c. 10 e. 29 b.7 d. 15 xyC(3, 0)D(5, 1)E(2, 5)B(1,1)A(0,2)0HP 23.Nilai maksimum bentuk objektif x + 3y pada himpunan penyelesaian sistem pertidaksamaan x ≥ 0, y ≥ 0, x + 2y ≥ 7, dan 2x + y ≤ 8, adalah . . . . a. 20 c. 28 e. 33 IIVIVIIIIxy02x + 3y = 125x + 2y = 20 144Matematika X SMK Kelompok:Penjualan dan Akuntansixy0246824b. 24 d. 30 24.Daerah yang diarsir pada gambar di samping merupakan himpunan penyelesaian sistem pertidaksamaan . . . . a. x – 2y ≥ -2, 3x + 4y ≤ 12, x ≥ 0, y ≥ 0 b. x – 2y ≤ -2, 3x + 4y ≥ 12, x ≥ 0, y ≥ 0 c. -2x + y ≥ -2, 4x + 3y ≤ 12, x ≥ 0, y ≥ 0 d. -2x + y ≤ -2, 4x + 3y ≥ 12, x ≥ 0, y ≥ 0 e. x – 2y ≤ -2, 3x + 4y ≤ 12, x ≥ 0, y ≥ 0 25.Perhatikan gambar di samping, yang merupakan himpunan penyelesaian sistem pertidaksamaan berikut 2x + y ≤ 24; x + 2y ≥ 12; x – y ≥ -2, x ≥ 0; y ≥ 0 adalah daerah . . . . a.I c. III e. V b.II d. IV 26.Nilai maksimum Z = 3x + 4y dari daerah feasible pada gambar di bawah ini terjadi di titik . . . . a.O b.A c.B d.C e.D 27. 28. Himpunan penyelesaian dari sistem pertidaksamaan ditunjukkan pada gambar di xy-2122462IIIIIIIVVTitik-titik pada gambar di samping merupakan grafik himpunan penyelesaian dari sistem pertidaksamaan. Nilai maksimum dari z = 3x + 5y adalah . . . . a.10 c. 32 e. 44 b.18 d. 36 samping (daerah terarsir). Sistem pertidaksamaan dari daerah feasible tersebut adalah . . . . a. 3x + 2y ≤ 21, -2x + 3y ≤ 12, x ≥ 0, y ≥ 0 b. 2x + 3y ≤ 21, -2x – 3y ≤ 12, x ≥ 0, y ≥ 0 c. -3x + 2y ≥ 21, -2x + 3y ≥ 12, x ≥ 0, y ≥ 0 d. -3x – 2y ≥ 21, 2x + 3y ≥ 12, x ≥ 0, y ≥ 0 e. 3x – 2y ≥ 21, 2x – 3y ≥ 12, x ≥ 0, y ≥ 0 145BAB IV Program Linier 29. Seorang pedagang kue mempunyai persediaan 9 kg tepung dan 6 kg mentega. Pedagang memproduksi kue jenis isi pisang dan isi keju. Untuk membuat kue jenis isi pisang memerlukan 150 gram tepung dan 50 gram mentega, sedangkan jenis isi keju memerlukan 75 gram tepung dan 75 gram mentega. Apabila harga sebuah kue jenis isi pisang Rp6.000,00 dan isi keju Rp4.000,00, maka keuntungan maksimum pedagang adalah . . . . a. Rp30.000,00 c. Rp36.000,00 e. Rp42.000,00 b. Rp32.000,00 d. Rp40.000,00 30. Nilai minimum z = 2x + 3y pada himpunan penyelesaian sistem pertidaksamaan 2x + y ≥ 8, x + y ≥ 6, x + 2y ≥ 8, x ≥ 0, y ≥ 0 adalah . . . . a.12 c. 16 e. 24 b.14 d. 20 31. Nilai minimum dari bentuk objektif P = 4x + 3y pada daerah penyelesaian sistem pertidaksamaan: 2x + 3y > 9 ; x + y > 4 ; x > 0 ; y > 0 adalah . . . . a. 12 c. 15 e. 18 b. 13 d. 16 32.Seseorang memproduksi kecap dengan dua macam kualitas yang setiap harinya menghasilkan tidak lebih dari 50 botol. Harga bahan-bahan pembuatan kecap per botol untuk kualitas I adalah Rp4.000,00 dan untuk kualitas II adalah Rp3.000,00. Ia tidak akan membelanjakan untuk pembuatan kecap tidak lebih dari Rp200.000,00. Jika banyaknya kecap kualitas I adalah x dan kualitas II adalah y, maka model matematikanya adalah . . . . a. x + y < 50 ; 4x + 3y < 200 ; x > 0 ; y > 0 b. x + y < 50 ; 3x + 4y < 200 ; x > 0 ; y > 0 c. x + y > 50 ; 4x + 4y < 200 ; x > 0 ; y > 0 d. x + y > 50 ; 4x + 3y > 200 ; x > 0 ; y > 0 e. x + y > 50 ; 3x + 4y > 200 ; x < 0 ; y < 0 33. Seorang pedagang paling sedikit menyewa 25 kendaraan untuk jenis truk dan colt dengan jumlah yang diangkut 224 karung. Truk dapat mengangkut 14 karung dan colt 8 karung. Jika ongkos sewa truk Rp100.000,00 dan colt Rp75.000,00, jumlah kendaraan masing-masing yang harus disewa agar ongkos minimal adalah . . . . a. Colt 25 buah dan tidak disewa truk d. Colt 4 buah dan truk 21 buah b. Colt 20 buah dan truk 5 buah e. Hanya disewa truk 25 buah c. Colt 21 buah dan truk 4 buah 146Matematika X SMK Kelompok:Penjualan dan Akuntansi34. Rokok A yang harga belinya Rp2.000,00 per bungkus dijual dengan laba Rp400,00 per bungkus, sedangkan rokok B harga belinya Rp1.000,00 dijual dengan laba Rp300,00 per bungkus. Seorang pedagang rokok mempunyai modal Rp800.000,00 dan kiosnya dapat menampung 500 bungkus rokok, akan memperoleh keuntungan sebesar-besarnya jika ia dapat menjual . . . . a.300 bungkus rokok A dan 200 bungkus rokok B b.200 bungkus rokok A dan 300 bungkus rokok B c.250 bungkus rokok A dan 250 bungkus rokok B d.100 bungkus rokok A dan 400 bungkus rokok B e.400 bungkus rokok A dan 100 bungkus rokok B 35.Suatu Perusahaan mebel akan memproduksi meja dan kursi dari kayu. Untuk sebuah meja dan kursi dibutuhkan masing-masing 10 keping papan dan 5 keping papan. Sedangkan biaya sebuah meja adalah Rp60.000,00 dan kursi Rp40.000,00. Perusahaan itu hanya memiliki bahan 500 keping papan dan biaya produksi yang akan dikeluarkan tidak lebih dari Rp3.600.000,00. Jika banyaknya meja yang diproduksi x buah dan kursi y buah, maka model matematika perusahaan di atas adalah . . . . a.2x + y 100 ; 3x + 2y 180 ; x 0 ; y 0 b.x + 2y 100 ; 2x + 3y 180 ; x 0 ; y 0 c.6x + 4y 180 ; 10x + 5y 180 ; x 0 ; y 0 d.4x + 6y 180 ; 5x + 10y 180 ; x 0 ; y 0 e.2x + y 100 ; 5x + 10y 180 ; x 0 ; y 0 36. Daerah yang diasir pada gambar di samping adalah himpunan penyelesaian dari sistem pertidaksamaan … . a.2x + 3y < 12 ; -3x + 2y > -6 ; x > 0 ; y > 0 b.2x + 3y < 12 ; -3x + 2y < -6 ; x > 0 ; y > 0 c.2x + 3y > 12 ; -3x + 2y >-6 ; x >0 ; y > 0 d.2x + 3y >12 ; 3x – 2y > 6 ; x > 0 ; y > 0 e.-2x + 3y < 12 ; 3x + 2y < -6 ; x > 0 ; y > 0 37. Diketahui fungsi objektif Z = 100x + 80y. Nilai maksimum Z pada daerah penyelesaian sistem pertidaksamaan 2x + y < 10; x+ 2y < 10; x + y < 6; x > 0; y > 0; x, y ∈ R adalah . . . . a. 400 c. 500 e. 560 b. 450 d. 520 38.Diketahui fungsi objektif P = 100x + 150y. Nilai minimum P pada daerah himpunan penyelesaian sistem pertidaksamaan: 3x + y > 9; x+ y > 7; x + 4y < 10; x > 0; y > 0; x, y ∈ R adalah . . . . a. 700 c. 1000 e. 1500 b. 750 d. 1350 39. Seorang agen sepeda bermaksud membeli 25 buah sepeda untuk persedian. Harga sepeda biasa Rp600.000,00 per buah dan sepeda federal Rp800.000,00 per buah. Ia merencanakan untuk tidak membelanjakan uangnya lebih dari Rp16.000.000,00 147BAB IV Program Linier dengan mengharap keuntungan Rp100.000,00 perbuah dari sepeda biasa dan Rp120.000,00 per buah dari sepeda federal. Keuntungan maksimum yang diperoleh agen sepeda tersebut adalah . . . . a. Rp2.300.000,00 c. Rp2.500.000,00 e. Rp2.700.000,00 b. Rp2.400.000,00 d. Rp2.600.000,00 40.Seorang pemilik toko sepatu ingin mengisi tokonya dengan sepatu laki-laki paling sedikit 100 pasang dan sepatu wanita paling sedikit 150 pasang. Toko tersebut dapat memuat 400 pasang sepatu. Keuntungan tiap pasang sepatu laki-laki adalah Rp10.000,00 dan tiap pasang sepatu wanita adalah Rp5.000,00. Jika banyak sepatu laki-laki tidak boleh melebihi 150 pasang, maka keuntungan terbesar yang dapat diperoleh adalah . . . . a. Rp2.750.000,00 c. Rp3.250.000,00 e. Rp3.750.000,00 b. Rp3.000.000,00 d. Rp3.500.000,00 B. Soal Essay Jawablah pertanyaan berikut dengan tepat. 1. Pengembang perumahan mempunyai tanah seluas 10.000 m2 akan dibangun tidak lebih dari 125 unit rumah tipe 36 dan 45. Tipe 36 dan 45 memerlukan luas tanah masing-masing 75 m2 dan 100 m2. Rumah-rumah tersebut akan dijual dengan harga per unit Rp40.000.000,00 untuk tipe 36 dan Rp60.000.000,00 untuk tipe 45. a. Misalkan banyaknya rumah tipe 36 dan 45 yang dapat dibangun adalah x dan y buatlah model matematika dari persoalan di atas. b. Tentukan daerah penyelesaiannya (daerah feasible) c. Tentukan bentuk objektif yang menyatakan hasil penjualan rumah. d. Berapakah masing-masing tipe yang harus dibangun agar mendapatkan keuntungan yang sebesar-besarnya (maksimum). e. Berapakah keuntungan maksimum tersebut. 2. Sebuah pabrik memproduksi biskuit yang dikemas dalam bentuk kaleng dengan isi 1 kilogram dan 2 kg. Kapasitas produksi tiap hari tidak lebih dari 120 kaleng. Tiap hari biskuit dengan kemasan 1 kg tidak kurang dari 30 kaleng dan kemasan 2 kg 50 kaleng. Keuntungan dari hasil penjualan Rp5.000,00 per kaleng dengan isi 1 kg dan Rp7.000,00 untuk kemasan isi 2 kg. Misalkan banyaknya produksi tiap jenis adalah x dan y. Tentukanlah: a. model matematika dari persoalan tersebut b. himpunan penyelesaian (daerah feasible) dari hasil pada a. c. banyaknya produksi masing-masing jenis agar diperoleh keuntungan maksimum dan berapakah keuntungan maksimumnya 148Matematika X SMK Kelompok:Penjualan dan AkuntansiRuang Pengetahuan TIPS DAN TRIK MELAMAR KERJA Gambar 4-22 Karyawan kantor Sumber: CD Image Jadi, jangan membuat surat lamaran yang membingungkan dengan bermacam-macam keterangan dalam satu bagian. Setidaknya ada empat bagian penting harus dicantumkan. Catatan: Tiap kop surat lamaran, biasanya berisi nama, alamat, nomor telepon, serta e-mail. Baru kemudian posisi yang kalian inginkan. a. Panjang Setiap lamaran/CV sebaiknya jangan sampai melebihi tiga lembar. Lebih baik dua lembar saja. b. Lampiran Tiap sertifikat ijazah, atau surat-surat referensi tidak perlu dimasukkan dalam surat lamaran. Kalian harus menunjukkannya saat datang dalam wawancara. Bila memang ingin melengkapi salah satu dokumen akademik, lampirkan ijasah terakhir serta referensi kerja sekarang. Sementara soal pas foto, yang paling populer digunakan selama ini memang seukuran pas foto untuk pasport. Namun, soal ukuran ini biasanya ditentukan oleh pemasang iklan dan biasanya tidak menjadi masalah. c. Lamaran Lewat E-mail Dengan berkembangnya internet, lamaran lewat Internet seperti sekarang juga sangat populer. Banyak perusahaan di Indonesia saat ini juga menerima lamaran lewat e-mail ini. Untuk lamaran lewat e-mail ini, kalian juga dapat melampirkan seluruh biodata itu lewat e-mail. d. Cover Surat Kerapian serta bentuk surat ternyata menjadi bagian sangat penting. Ada sebagian orang yang menganggap bahwa wawancara merupakan bagian paling menentukan, tidak peduli apakah surat lamarannya baik atau jelek. Padahal dengan membuat lamaran bagus serta keterangan jelas dan singkat, merupakan salah satu bukti keseriusan Kalian meraih posisi yang diinginkan.(www.astaga.com). Lamaran yang kita buat memang harus sesingkat mungkin, namun tetap bisa memasukkan semua unsur yang diperlukan seperti disebutkan di atas tadi. Soalnya, pemeriksaan lama-ran biasanya dilakukan cepat, serta si pemeriksa hanya melihat hal-hal yang dibutuhkan atau yang menjadi persya-ratan. Dengan pertimbangan itu, kemungkinan kalian dapat diterima juga sangat besar, karena menunjuk-kan kalau kalian merupakan calon pegawai potensial, dengan potensi yang kalian miliki tersebut. Next >