< Previous32 dapat digunakan sama sekali, maka timbangan harus diperbaiki oleh suatu agen (supplier) (Harmita 2004). Beberapa aturan umum harus diingat ketika menggunakan neraca analitik : Biarkan sampel hingga mencapai suhu kamar sebelum ditimbang. Sampel yang terlalu panas akan membuat arus konveksi dan berat sampel jelas akan salah. Bahan kimia harus ditempatkan dalam gelas ukur atau tabung reaksi serta cawan atau nampan yang dilapisi kertas untuk beban yang banyak. Beratnya kertas yang terbaik untuk jumlah kecil (biasanya < 1 gram ); berat nampan yang digunakan untuk jumlah yang lebih besar, cawan dan gelas ukur yang direkomendasikan. Jangan menempatkan bahan kimia langsung pada meja neraca. Neraca analitik harus tetap bersih setiap saat. Jika ada bahan yang tumpah di dalam ruang katagori berat, maka harus hati-hati membersihkan dengan sikat keseimbangan. b). Teknik Kalibrasi Neraca Analitik Pengontrolan Neraca Timbangan/neraca dikontrol dengan menggunakan anak timbangan yang sudah terpasang atau dengan dua anak timbangan eksternal, misal 10 gram dan 100 gram. Timbangan/neraca digital, harus menunggu 30 menit untuk mengatur temperatur. Jika menggunakan timbangan yang sangat sensitif, hanya dapat bekerja pada batas temperatur yang ditetapkan. Timbangan harus terhindar dari gerakan (angin), sebelum menimbang angka “nol” harus dicek dan jika perlu lakukan koreksi. Penyimpangan berat dicatat pada lembar/kartu kontrol, dimana pada lembar tersebut 33 tercantum pula berapa kali timbangan harus dicek. Jika timbangan tidak dapat digunakan sama sekali maka timbangan harus diperbaiki oleh suatu agen (supplier). Penanganan Neraca Kedudukan timbangan harus diatur dengan sekrup dan harus tepat horizontal dengan “Spirit level” (waterpass) sewaktu-waktu timbangan bergerak, oleh karena itu harus dicek lagi. Setiap orang yang menggunakan timbangan harus merawatnya, sehingga timbangan tetap bersih dan terawat dengan baik. Jika tidak, si pemakai harus melaporkan kepada manajer lab. timbangan harus dikunci jika anda meninggalkan ruang kerja. Kebersihan Neraca Kebersihan timbangan harus dicek setiap kali selesai digunakan, bagian dan menimbang harus dibersihkan dengan menggunakan sikat, kain halus atau kertas (tissue) dan membersihkan timbangan secara keseluruhan timbangan harus dimatikan, kemudian piringan (pan) timbangan dapat diangkat dan seluruh timbangan dapat dibersihkan dengan menggunakan pembersih seperti deterjen yang lunak, campurkan air dan etanol/alkohol. Sesudah dibersihkan timbangan dihidupkan, kemudian cek kembali dengan menggunakan anak timbangan. c). Teknik Kalibrasi Neraca Teknis Adapun teknik pengkalibrasian pada neraca teknis adalah dengan memutar tombol kalibrasi pada ujung neraca sehingga titik kesetimbangan lengan atau ujung lengan tepat pada garis kesetimbangan, namun sebelumnya pastikan semua anting 34 pemberatnya terletak tepat pada angka nol di masing-masing lengan. Dalam mengukur massa benda dengan neraca teknis dua lengan atau tiga lengan sama. Ada beberapa langkah di dalam melakukan pengukuran dengan menggunakan neraca teknis, antara lain: Melakukan kalibrasi terhadap neraca yang akan digunakan untuk menimbang, dengan cara memutar sekrup yang berada disamping atas piringan neraca ke kiri atau ke kanan posisi dua garis pada neraca sejajar; Meletakkan benda yang akan diukur massanya; Menggeser skalanya dimulai dari yang skala besar baru gunakan skala yang kecil. Jika panahnya sudah berada di titik setimbang 0; dan Jika dua garis sejajar sudah seimbang maka baru memulai membaca hasil pengukurannya. d. Teknik Penggunaan Neraca Penggunaan timbangan membutuhkan teknik tertentu. Tiap- tiap jenis timbangan memiliki perbedaan teknik penggunaan. Tingkat kesulitan dari penggunaan timbangan juga berbeda- beda karena ditentukan oleh fungsinya. Untuk itu perlu mengetahui teknik penggunaan timbangan agar hasil penghitungan massa yang dilakukan tepat dan sesuai dengan tujuan (Sutrisno 2012). Alat ukur massa yang sering digunakan di laboratorium adalah neraca teknis untuk menimbang benda-benda yang tidak memerlukan ketelitian tinggi, serta neraca analitik untuk menimbang bahan- bahan dengan ketelitian yang tinggi seperti bahan untuk membuat larutan kimia (Atmojo 2011). Alat penghitung satuan massa suatu benda dengan teknik digital memiliki tingkat ketelitian yang cukup tinggi. Prinsip kerjanya yaitu dengan penggunaan sumber tegangan listrik yaitu stavolt dan dilakukan peneraan terlebih dahulu 35 sebelum digunakan, kemudian bahan diletakkan pada neraca lalu dilihat angka yang tertera pada layar, angka itu merupakan berat dari bahan yang ditimbang (Atmojo 2011). 1). Teknik Penggunaan Neraca Analitik Pada neraca analitik terdapat skala minimum dan skala maksimum. Skala minimum pada neraca analitik adalah sebesar 0,1 mg dan skala maksimum misal sebesar 220 mg. Neraca analitik dapat dikalibrasi dengan menggunakan anak timbangan yang sudah diketahui bobot massanya dan dengan menekan tombol CAL untuk mengkalibrasi. Desimal yang baik pada neraca analitik adalah sebesar 4 digit. Beberapa hal yang perlu diperhatikan bekerja dengan neraca analitik adalah: Neraca analitik digital adalah neraca yang sangat peka, karena itu bekerja dengan neraca ini harus secara halus dan hati-hati. Sebelum mulai menimbang persiapkan semua alat bantu yang dibutuhkan dalam penimbangan. Langkah kerja penimbangan meliputi: a. Persiapan pendahuluan alat-alat penimbangan yaitu siapkan alat seperti sendok/spatula dan zat yang akan ditimbang, kaca arloji atau botol timbang, dan kertas isap. b. Pemeriksaan pendahuluan terhadap neraca yang meliputi: periksa kebersihan neraca (terutama piring-piring neraca), kedataran dan kesetimbangan neraca. c. Penimbangan dapat dilakukan setelah diperoleh keadaan setimbang pada neraca dan timbangan pada posisi nol, demikian pula setelah penimbangan selesai posisi timbangan dikembalikan seperti semula 36 Hal-hal yang harus diketahui dan harus dilakukan dalam mengoprasikan neraca digital sebelum hingga selesai melakukan penimbangan: 1. Keadaan neraca harus siap pakai 2. Neraca harus bersih (terutama piring-piring neraca) 3. Anak timbangan dalam keadaan lengkap 4. Persiapan pendahuluan terhadap alat bantu penimbangan 5. Pemeriksaan kedataran neraca dan kesetimbangan neraca 6. Pekerjaan penimbangan dan perhitungan hasil penimbangan 7. Melaporkan hasil penimbangan 8. Mengembalikan neraca pada keadaan semula. Langkah kerja penimbangan dengan neraca analitik meliputi: 1. Persiapan alat bantu penimbangan. Untuk menimbang zat padat diperlukan: Kaca arloji yang kering dan bersih, digunakan untuk menampung kelebihan zat yang ditimbang, karena kelebihan zat tidak boleh dikembalikan ke botol zat. plastik), Sendok (biasanya sendok analit spatula dari stainless steel) Kertas isap untuk memegang tempat menimbang pada saat memasukan/mengeluarkan alat timbang (dan zat) ke atau dari dalam neraca. Botol timbang sebagai tempat zat yang akan ditimbang. Zat yang akan ditimbang dan setelah penimbangan selesai, botol zat harus dikembalikan ke tempatnya. 2. Pemeriksaan pendahuluan terhadap neraca adalah: 37 Pemeriksaan kebersihan neraca terutama piring-piring neraca dapat dibersihkan menggunakan sapu-sapu yang tersedia di dekat neraca. Pemeriksaan kedataran neraca dilakukan dengan cara melihat water pass, dengan mengatur sekrup pada kaki neraca, sehingga gelembung air di water pass tepat berada di tengah. Pemeriksaan kesetimbangan neraca yang dilakukan dengan membiarkan dahulu pointer bergoyang ke kiri dan ke kanan beberapa kali. Jika goyangan maksimum ke kiri dan ke kanan kira-kira sama jauh maka neraca dalam keadaan setimbang. 3. Cara menggunakan neraca analitik Nolkan terlebih dulu neraca tersebut Letakkan zat yang akan ditimbang pada bagian timbangan Baca nilai yang tertera pada layar monitor neraca Setelah digunakan, nolkan kembali neraca tersebut e. Validasi Alat Timbangan Hasil pengukuran yang diberikan oleh beberapa alat timbangan sejenis tidak selalu menunjukkan hasil yang sama, meskipun alat tersebut mempunyai tipe yang sama. Perbedaan ini diperbesar lagi dengan adanya pengaruh lingkungan, operator, serta metode/teknik pengukuran. Padahal dalam menghasilkan hasil pengukuran tersebut sangat diharapkan bahwa setiap alat ukur yang digunakan dimanapun memberikan hasil ukur yang sama dalam kaitannya dengan keperluan keamanan, kesehatan, transaksi, dan keselamatan (Harmita 2004). Agar setiap alat dapat memberikan hasil ukur dengan keabsahan yang sama, alat ukur tersebut perlu mempunyai ketelusuran kepada standar nasional atau standar internasional. Cara untuk memberikan jaminan 38 bahwa alat yang digunakan mempunyai ketelusuran kepada standar nasional adalah dengan melakukan kalibrasi terhadap alat tersebut. Lebih dari itu untuk memelihara ketelusuran tersebut perlu dilakukan perawatan alat dalam selang kalibrasi tertentu. Penerapan standar ISO/IEC 17025 : 2005, upaya untuk menyamakan persepsi bagi semua pihak terkait perlu dilaksanakan ketelusuran pengukuran. Ketelusuran pengukuran tidak hanya sekedar menjadi persyaratan administratif, melainkan telah menjadi kebutuhan teknis yang mendasar terutama dengan diwajibkannya mencantumkan estimasi ketidakpastian dalam hasil uji (Harmita 2004). Mengukur selalu menimbulkan ketidakpastian. Artinya, tidak ada jaminan bahwa pengukuran ulang akan memberikan hasil yang tepat sama. Ada tiga sumber utama yang menimbulkan ketidakpastian pengukuran, yaitu: (1) Kesalahan pengukuran untuk kepentingan analisis dapat dikelompokkan menjadi 3 golongan, yaitu: kesalahan sistematis, kesalahan acak, dan kesalahan merambat. (2) Ketepatan suatu hasil pengukuran, yaitu besar atau kecilnya penyimpangan yang diberikan oleh hasil pengukuran dibandingkan dengan nilai sebenarnya. (3) Kecermatan, yaitu dapat dinyatakan oleh besar-kecilnya simpangan baku (s) yang dapat diperoleh dengan jalan melakukan analisis berulang-ulang. (a) Ketidakpastian Sistematik Ketidakpastian sistematik bersumber dari alat ukur yang digunakan atau kondisi yang menyertai saat pengukuran. Bila sumber ketidakpastian adalah alat ukur, maka setiap alat ukur tersebut digunakan akan memproduksi ketidakpastian yang sama. Ada 39 beberapa ketidakpastian yang termasuk dalam ketidakpastian sistematik antara lain: Ketidakpastian alat Ketidakpastian ini muncul akibat kalibrasi skala penunjukkan angka pada alat tidak tepat, sehingga pembacaan skala menjadi tidak sesuai dengan yang sebenarnya. Misalnya, kuat arus listrik yang melewati suatu beban sebenarnya 1,0 A, tetapi bila diukur menggunakan suatu Ampermeter tertentu selalu terbaca 1,2 A. Karena selalu ada penyimpangan yang sama, maka dikatakan bahwa Ampermeter itu memberikan ketidakpastian sistematik sebesar 0,2 A. Untuk mengatasi ketidakpastian tersebut, alat harus di kalibrasi setiap akan dipergunakan. Kesalahan Nol Ketidaktepatan penunjukan alat pada skala nol juga melahirkan ketidakpastian sistematik. Hal ini sering terjadi, tetapi juga sering terabaikan. Sebagian besar alat umumnya sudah dilengkapi dengan sekrup pengatur/pengenol. Bila sudah diatur maksimal tetap tidak tepat pada skala nol, maka untuk mengatasinya harus diperhitungkan selisih kesalahan tersebut setiap kali melakukan pembacaan skala. Waktu respon yang tidak tepat Ketidakpastian pengukuran ini muncul akibat dari waktu pengukuran (pengambilan data) tidak bersamaan dengan saat munculnya data yang seharusnya diukur, sehingga data yang diperoleh bukan data yang sebenarnya. Misalnya, kita ingin mengukur periode getar suatu beban yang digantungkan pada pegas dengan menggunakan stopwatch. Selang waktu yang diukur sering tidak tepat karena pengukur terlalu cepat atau terlambat menekan tombol stopwatch saat kejadian berlangsung. Kondisi yang tidak sesuai 40 Ketidakpastian pengukuran ini muncul karena kondisi alat ukur dipengaruhi oleh kejadian yang hendak diukur. Misalkan mengukur panjang kawat baja pada suhu tinggi menggunakan mistar logam. Hasil yang diperoleh tentu bukan nilai yang sebenarnya karena panas mempengaruhi objek yang diukur maupun alat pengukurnya. (b) Ketidakpastian Random (Acak) Ketidakpastian random umumnya bersumber dari gejala yang tidak mungkin dikendalikan secara pasti atau tidak dapat diatasi secara tuntas. Gejala tersebut umumnya merupakan perubahan yang sangat cepat dan acak hingga pengaturan atau pengontrolannya di luar kemampuan kita. Misalnya: Fluktuasi pada besaran listrik. Tegangan listrik selalu mengalami fluktuasi (perubahan terus menerus secara cepat dan acak). Akibatnya kalau kita ukur, nilainya juga berfluktuasi. Demikian pula saat kita mengukur kuat arus listrik. Getaran landasan. Alat yang sangat peka (misalnya seismograf) akan melahirkan ketidakpastian karena gangguan getaran landasannya. Radiasi latar belakang. Radiasi kosmos dari angkasa dapat mempengaruhi hasil pengukuran alat pencacah, sehingga melahirkan ketidakpastian random. Gerak acak molekul udara. Molekul udara selalu bergerak secara acak (gerak Brown), sehingga berpeluang mengganggu alat ukur yang halus, misalnya mikro-galvanometer danmelahirkan ketidakpastian pengukuran. (c) Ketidakpastian Pengamatan 41 Ketidakpastian pengamatan merupakan ketidakpastian pengukuran yang bersumber dari kekurangterampilan manusia saat melakukan kegiatan pengukuran. Misalnya: metode pembacaan skala tidak tegak lurus (paralaks) seperti terlihat pada Gambar 6, salah dalam membaca skala, dan pengaturan atau pengesetan alat ukur yang kurang tepat. Gambar 6. Posisi A dan C menimbulkan kesalahan paralaks, posisi B yang benar. Seiring kemajuan teknologi, alat ukur dirancang semakin canggih dan kompleks, sehingga banyak hal yang harus diatur sebelum alat tersebut digunakan. Bila yang mengoperasikan tidak terampil, semakin banyak yang harus diatur semakin besar kemungkinan untuk melakukan kesalahan sehingga memproduksi ketidakpastian yang besar pula. Besarnya ketidakpastian berpotensi menghasilkan produk yang tidak berkualitas, sehingga harus selalu diusahakan untuk memperkecil nilainya, di antaranya dengan kalibrasi, menghindari gangguan luar, dan hati-hati dalam melakukan pengukuran. Next >