< PreviousMatematika61 Setelah mengamati Contoh 2.11 – 3.12, coba Anda buat pertanyaan-pertanyaan yang terlintas di benak Anda tentang rata-rata, median, dan modus untuk data berkelompok. Anda juga dapat menghubungkan tentang rata-rata, median, dan modus untuk data tunggal yang sudah Anda pelajari sebelumnya. Dengan membandingkan hasil pengamatan ketiga contoh di atas dengan pengetahuan yang Anda miliki sebelumnya untuk data tunggal memungkinkan Anda untuk mengajukan pertanyaan yang membantu Anda dalam memahami ukuran pemusatan data untuk data berkelompok. Tuliskan minimal 3 pertanyaan Anda dalam kotak yang sudah disediakan di bawah ini. Hal yang perlu Anda ketahui untuk menentukan rata-rata pada data tunggal adalah banyak data yang biasa dilambangkan dengan n dan jumlah keseluruhan dari data tersebut. Jika banyak data yang dihadapi sedikit, tentu Anda dapat dengan mudah untuk menentukan rata-rata. Di lain pihak, jika data yang dihadapi berukuran besar, Anda perlu mengelompokkan data tersebut dalam beberapa kelompok untuk memudahkan mengetahui karakteristik data. Akibatnya, menentukan rata-rata untuk data yang sudah dikelompokkan tersebut berbeda dengan untuk data tunggal. Untuk menambah wawasan Anda mengenai ukuran pemusatan data untuk data berkelompok, Anda perhatikan contoh berikut ini.62Kelas XII SMA/MA/SMK/MAKContoh Soal 2.14Berikut merupakan data usia 80 pengusaha dalam memulai usahanya yang sudah diberikan pada Contoh 2.1.18 24 19 28 30 19 35 40 23 2126 34 27 40 38 30 21 24 22 1832 17 18 21 26 33 35 20 28 2726 34 31 37 40 17 18 18 20 3316 20 18 36 35 24 39 19 31 3126 28 19 35 31 31 28 21 23 2620 24 24 29 30 30 26 29 28 2019 28 30 32 38 40 25 25 31 21Ketika data ini dikelompokkan menjadi 5 kelas maka akan didapatkan distribusi frekuensi seperti di bawah ini. %% % 54%16 – 2021 – 2526 – 3031 – 3536 – 4015,5 – 20,520,5 – 25,525,5 – 30,530,5 – 35,535,5 – 40,51823283338191521169 Perhatikan bahwa kelas pertama mempunyai titik tengah 18. Ini artinya bahwa data yang masuk dalam kelas pertama bisa kurang dari 18 atau lebih dari 18. Akibatnya jumlah data pada kelas pertama dapat didekati (aproksimasi) sebesar 342. Jumlah data keseluruhan dengan pendekatan sebesar 2145, sehingga rata-rata untuk data berkelompok di atas adalah 26,8 tahun. Jika Anda hitung rata-rata untuk data tunggal di atas, apa yang Anda peroleh? Bagaimana hasilnya jika Anda bandingkan dengan rata-rata untuk data berkelompok? Tuliskan pada kotak di bawah ini.Matematika63 Menentukan median dan modus untuk data berkelompok hampir sama dengan menentukan rata-rata, yaitu yang akan ditentukan berupa perkiraan (pendekatan). Berdasarkan frekuensi setiap kelas, Anda dapat menentukan lokasi atau pada selang mana median berada yang disebut dengan kelas median dan juga dapat menentukan kelas modus dengan mempertimbangkan frekuensi setiap kelas. Dengan memperhatikan fakta tersebut, tentukan kelas median dan kelas modus pada distribusi frekuensi di atas. Tuliskan jawaban Anda pada kotak yang disediakan dan tuliskan bagaimana caranya untuk mendapatkan kedua kelas tersebut. Di lain pihak, jika data dikelompokkan menjadi 7 kelas maka akan didapatkan distribusi frekuensi berikut ini. %% % 54%16 – 1920 – 2324 – 2728 – 3132 – 3536 – 3940 – 43 Dengan melengkapi tabel distribusi frekuensi di atas, coba Anda tentukan perkiraan jumlah data pada setiap kelas sekaligus perkiraan jumlah data keseluruhan. Kemudian dengan mempertimbangkan banyak data, dapatkah Anda memperkirakan rata-rata dari data berkelompok tersebut? Tentukan pula kelas median dan kelas modus. Selanjutnya, dengan data yang sama tetapi distribusi frekuensi yang berbeda apa yang dapat Anda simpulkan mengenai rata-rata, kelas median, dan kelas modus dari kedua distribusi frekuensi di atas?64Kelas XII SMA/MA/SMK/MAKTuliskan jawaban Anda pada kotak berikut ini. Ukuran pemusatan data (rata-rata, median, modus) untuk data berkelompok secara prinsip sama dengan ukuran pemusatan data untuk data tunggal. Dari langkah-langkah pengamatan dan penggalian informasi mungkin Anda sudah tahu perbedaan ukuran pemusatan data untuk data tunggal dan data berkelompok. Ukuran pemusatan untuk data tunggal dapat ditentukan dengan pasti, tetapi ukuran pemusatan untuk data berkelompok ditentukan dengan perkiraan atau pendekatan. Untuk mengetahui lebih lanjut bagaimana cara menentukan ukuran pemusatan untuk data berkelompok, lakukan beberapa kegiatan berikut ini.2.2.1.1 Rata-rata Berikut ini diberikan distribusi frekuensi pada Contoh 2.11. Lengkapi tabel berikut ini untuk menentukan rata-rata usia 50 orang terkaya di Indonesia. %% % 5 >xi?4% >fi?xi . fi30 – 3429,5 – 34,5535 – 3934,5 – 39,51040 – 4439,5 – 44,5745 – 4944,5 – 49,52050 – 5449,5 – 54,58 Matematika65 Telah diketahui sebelumnya bahwa rata-rata usia 50 orang terkaya di Indonesia adalah 43,6 tahun. Dengan mengamati tabel di atas, bagaimana caranya bisa didapatkan hasil 43,6? Tuliskan rumus untuk menentukan rata-rata data berkelompok menurut Anda dalam kotak yang tersedia di bawah ini.2.2.1.2 Median Lengkapi tabel berikut ini untuk mengetahui lebih lanjut cara menentukan median data berkelompok. Distribusi frekuensi yang digunakan adalah distribusi frekuensi pada Contoh 2.11. %% %% )5 (Li?"# % (p?4% (fi?Fi12iinFfLi A 12iinFfp 30 – 3435 – 3940 – 4445 – 4950 – 5429,5 – 34,534,5 – 39,539,5 – 44,544,5 – 49,549,5 – 54,5510720805Fi : jumlah frekuensi kelas-kelas sebelum kelas ke-i.n : banyak data Telah diketahui sebelumnya bahwa median dari distribusi frekuensi tersebut adalah 45,25. Berdasarkan tabel yang sudah dilengkapi di atas, bagaimana menurut Anda cara menentukan median? Kelas manakah yang 66Kelas XII SMA/MA/SMK/MAKdigunakan sebagai median? Mengapa? Tuliskan jawaban Anda termasuk rumus median di kotak yang sudah disediakan.2.1.3 ModusLengkapi tabel berikut untuk mengetahui cara menentukan modus data ber-kelompok. %% %% )5 (Li?"# % >p?4% (fi?d1d2Li + p(112ddd?30 – 3435 – 3940 – 4445 – 4950 – 5429,5 – 34,534,5 – 39,539,5 – 44,544,5 – 49,549,5 – 54,5510720805120d1 : selisih frekuensi kelas ke-i dengan kelas sebelumnyad2 : selisih frekuensi kelas ke-i dengan kelas berikutnya Telah diketahui sebelumnya bahwa modus usia 50 orang terkaya di Indonesia adalah 47,1 tahun. Berdasarkan tabel yang sudah dilengkapi di atas, kelas manakah yang sesuai dengan hasil tersebut? Dapatkah Anda simpulkan bagaimana menentukan modus data berkelompok sekaligus dengan rumusnya? Tuliskan jawaban Anda dalam kotak berikut ini.Matematika67 Dari rumus rata-rata, median, dan modus yang telah Anda dapatkan, coba Anda cek kebenaran rumus tersebut dengan menggunakannya pada Contoh 2.12 dan Contoh 2.13.Sedikit Informasi Ukuran pemusatan atau ukuran penyebaran suatu data yang diperoleh dari populasi disebut dengan parameter, sedangkan jika datanya berasal dari sampel maka disebut dengan statistik. Sehingga rata-rata suatu data yang diperoleh dari suatu populasi merupakan parameter dan dilambangkan dengan . Rata-rata suatu data yang diperoleh dari sampel yang mewakili populasi merupakan statistik yang dilambangkan dengan x. Sebagian orang mungkin mempunyai kesalahpahaman mengenai rata-rata. Jika ada yang mengatakan ”rata-rata gaji buruh di Indonesia adalah Rp2.500.000,00” maka sebenarnya kita tidak bisa langsung mengetahui bahwa rata-rata yang digunakan adalah rata-rata hitung seperti yang kita tentukan rumusnya sebelumnya. Rata-rata mempunyai banyak jenis, di antaranya adalah rata-rata hitung, rata-rata geometri, dan rata-rata harmonik yang besarannya dimungkinkan tidak sama antar rata-rata tersebut. Anda diskusikan hasil yang Anda dapatkan dengan teman sebangku Anda. Guru Anda akan menunjuk beberapa siswa untuk menuliskan hasil yang diperoleh di papan tulis. Diskusikan hasil tersebut dengan teman sekelas Anda untuk mendapatkan kesimpulan kelas. Tuliskan kesimpulan Anda dikotak yang sudah disediakan dibawah ini.68Kelas XII SMA/MA/SMK/MAKKegiatan 2.2.2 Ukuran Penyebaran Data Berkelompok Mengetahui hanya rata-rata dari suatu data tidak cukup untuk mendeskripsikan data sepenuhnya. Anda juga perlu mengetahui bagaimana penyebaran data. Sebagai contoh, seorang penjual sepatu olah raga di suatu daerah telah mengetahui bahwa rata-rata ukuran sepatu olah raga yang laris adalah ukuran 40. Penjual sepatu tersebut tidak akan bertahan lama dalam penjualan sepatu olah raga ini jika dia menjual sepatu hanya ukuran 40. Walaupun dia mengetahui rata-rata ukuran sepatu pembeli di daerah tersebut, dia juga perlu mengetahui bagaiamana data menyebar, yaitu apakah datanya mendekati rata-rata ataukah menyebar merata. Ukuran yang menentukan penyebaran data disebut dengan ukuran penyebaran data. Untuk data berkelompok, ukuran penyebaran data meliputi simpangan rata-rata, simpangan baku, dan ragam. Anda mungkin masih ingat bagaimana menentukan simpangan rata-rata, simpangan baku, dan ragam untuk data tunggal. Secara prinsip cara menentukan simpangan rata-rata, simpangan baku, dan ragam untuk data tunggal hampir sama dengan untuk data berkelompok. Berikut akan diberikan beberapa contoh distribusi frekuensi suatu populasi disertai dengan simpangan rata-rata, simpangan baku, dan ragam. Contoh Soal 2.15Data yang disajikan berikut merupakan data pendapatan netto 45 perusahaan besar di Indonesia dalam milyar rupiah. %4%10 – 2021 – 3132 – 4243 – 5354 – 6465 – 7528157103 Matematika69 Ukuran penyebaran pada data berkelompok di atas dapat dihitung, yaitu simpangan rata-rata adalah 12,4 dan simpangan bakunya adalah 14,6. Selanjutnya ragam dari data ini adalah 212,3.Contoh Soal 2.16\ dalam kilometer per liter. Distribrusi frekuensi yang didapatkan disajikan berikut ini. %4%7,5 – 12,512,5 – 17,517,5 – 22.522,5 – 27,527,5 – 32,5351552Dari distribusi di atas didapatkan simpangan rata-rata 3,5, simpangan baku sebesar 5,1 dan ragam sebesar 25,7Di bawah ini diberikan histogram pada Contoh 2.10 yang menyajikan berat badan 30 balita (dalam kilogram) yang datang pada posyandu di suatu daerah.Contoh Soal 2.17 FrekuensiBerat Badan98765432103,45 4,40 5,35 6,30 7,25 8,20 9,15 10,10 11,05 12,00 12,953978370Kelas XII SMA/MA/SMK/MAK Berdasarkan histogram tersebut dapat ditentukan ukuran penyebaran datanya, yaitu simpangan rata-rata sebesar 1,85, simpangan baku sebesar 2,26 dan ragam sebesar 5,09. Informasi-informasi atau istilah matematika penting dari hasil pengamatan mengenai ukuran penyebaran data berkelompok dapat dituliskan dalam kotak yang disediakan berikut. Berdasarkan pengamatan Anda terhadap ketiga contoh yang diberikan sebelumnya, buatlah beberapa pertanyaan tentang ukuran penyebaran data berkelompok. Tuliskan pertanyaan Anda dalam kotak yang tersedia di bawah ini.Next >